These maps show changes in the number of heat waves per year (frequency); the average length of heat waves in days (duration); the number of days between the first and last heat wave of the year (season length); and how hot the heat waves were, compared with the local temperature threshold for defining a heat wave (intensity). These data were analyzed from 1961 to 2023 for 50 large metropolitan areas. The size of each circle indicates the rate of change per decade. Solid-color circles represent cities where the trend was statistically significant. For more information: www.epa.gov/climate-indicators
In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
How many incorporated places are registered in the U.S.?
There were 19,502 incorporated places registered in the United States as of July 31, 2019. 16,410 had a population under 10,000 while, in contrast, only 10 cities had a population of one million or more.
Small-town America
Suffice it to say, almost nothing is more idealized in the American imagination than small-town America. When asked where they would prefer to live, 30 percent of Americans reported that they would prefer to live in a small town. Americans tend to prefer small-town living due to a perceived slower pace of life, close-knit communities, and a more affordable cost of living when compared to large cities.
An increasing population
Despite a preference for small-town life, metropolitan areas in the U.S. still see high population figures, with the New York, Los Angeles, and Chicago metro areas being the most populous in the country. Metro and state populations are projected to increase by 2040, so while some may move to small towns to escape city living, those small towns may become more crowded in the upcoming decades.
U.S. Census Bureau 2020 block groups within the City of Seattle with American Community Survey (ACS) 5-year series data of frequently requested topics. Data is pulled from block group tables for the most recent ACS vintage. Seattle neighborhood geography of Council Districts, Comprehensive Plan Growth Areas are also included based on block group assignment.The census block groups have been assigned to a neighborhood based on the distribution of the total population from the 2020 decennial census for the component census blocks. If the majority of the population in the block group were inside the boundaries of the neighborhood, the block group was assigned wholly to that neighborhood.Feature layer created for and used in the Neighborhood Profiles application.The attribute data associated with this map is updated annually to contain the most currently released American Community Survey (ACS) 5-year data and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintages: 2023ACS Table(s): Select fields from the tables listed here.Data downloaded from: Census Bureau's Explore Census Data <div style='font-family:inher
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
Of the most populous cities in the U.S., San Jose, California had the highest annual income requirement at 288,953 U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of 87,991 U.S. dollars in 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 cities in the Beltrami County, MN by Multi-Racial Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
Data from: American Community Survey, 5-year SeriesKing County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010 of over 50 attributes of the most requested data derived from the U.S. Census Bureau's demographic profiles (DP02-DP05). Also includes the most recent release annually with the vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): DP02, DP03, DP04, DP05Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions
A dataset listing Colorado cities by population for 2024.
This statistic shows the top 25 cities in the United States with the highest resident population as of July 1, 2022. There were about 8.34 million people living in New York City as of July 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 cities in the Hennepin County, MN by Hispanic American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://www.wisconsin-demographics.com/terms_and_conditionshttps://www.wisconsin-demographics.com/terms_and_conditions
A dataset listing Wisconsin cities by population for 2024.
In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data provides estimates of Internet, broadband, and mobile use at the subnational level from 1997-2014. While the U.S. Bureau of the Census has collected data on Internet use over the years, estimates below the state level did not exist until the introduction of the new American Community Survey in 2013. The datasets here fill these gaps with estimates over time for cities, counties, metropolitan areas and states. They also provide demographic breakdowns for the 2013 and 2014 American Community Survey data, beyond what is available on the census website. The datasets can be used to draw comparisons across geographic locations and across time, to track inequality, change, and the impact of Internet use. Collectively, they show major differences across cities, as well as between urban and rural counties. Time series data indicate the flattening of growth in recent years, leading to the persistence of inequalities across places and demographic groups. Multilevel models are used to estimate the percentage of Internet use across counties, principal cities, and metropolitan areas with the CPS and ACs data. A group of random intercept logistic regressions (a type of multilevel model) are constructed for each of the Internet-related variables, namely, home Internet access, home broadband, mobile Internet, and fully-connected household (with broadband and mobile). Estimates are based on the U.S. Bureau of the Census Current Population Survey data for 1997, 2998, 200, 2001, 2003, 2007, 2009, 2010, 2011, and 2012 and the U.S. Bureau of the Census American Community Survey 2013 and 2014, with estimates for missing years imputed via linear interpolation. Estimates for home Internet access are available for 1997-2014, home broadband use for 2000-2014, and mobile use and fully-connected Internet use for 2011-2014. Data available for different geographies is described below. Current Population Survey Data, 1997-2012: Internet use time series, three-year averages, time series for rate of change in Internet use, three-year averages for the rate of change, and yearly summary statistics are available for approximately 330 counties (with some variation over years), the 50 largest Metropolitan Statistical Areas (MSAs), principal cities in the 50 largest MSAs, and the 50 states. American Community Survey Data, 2013-2014: Using Summary Tables of the American Community Survey available in FactFinder, estimates for home Internet access and home broadband are provided by race, ethnicity, education, age, and employment status for 50 states, 817 counties, 381 MSAs, 383 principal cities in 2013 and 387 principal cities in 2014. Using microdata, estimates are developed for home Internet access, home broadband, mobile Internet, and fully connected households broken down by race, ethnicity, education, age, family income, and language skill. The microdata estimates are available for 50 states, 417 counties, 260 MSAs and 102 principal cities in 2013. See Codebook for a more complete description of the datasets, data sources, survey questions, and methods. See the Center for Policy Informatics at Arizona State University website at policyinformatics.asu.edu/broadband-data-portal/home for visualization (maps and graphs) and for further information about this project.
https://www.mississippi-demographics.com/terms_and_conditionshttps://www.mississippi-demographics.com/terms_and_conditions
A dataset listing Mississippi cities by population for 2024.
City of Seattle neighborhood boundaries with American Community Survey (ACS) 5-year series data of frequently requested topics. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment. Seattle neighborhood geography of Council Districts, Comprehensive Plan Growth Areas are included.The census block groups have been assigned to a neighborhood based on the distribution of the total population from the 2020 decennial census for the component census blocks. If the majority of the population in the block group were inside the boundaries of the neighborhood, the block group was assigned wholly to that neighborhood.Feature layer created for and used in the Neighborhood Profiles application.The attribute data associated with this map is updated annually to contain the most currently released American Community Survey (ACS) 5-year data and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. For more information regarding the ACS vintage, table sources and data processing notes, please see the item page for the source map service.
As part of the development of an information base for subsequent policy initiatives, the National Institute of Justice sponsored a nationwide survey of police psychologists to learn more about the characteristics of officers who abuse force, the types of measures police psychologists recommend to control police violence and the role of police psychologists in preventing and identifying individual police officers at risk for use of excessive force. Police personnel divisions in 50 large cities were contacted for names and addresses of the police psychologists who provided services to their departments. Data were collected using a telephone interview protocol that included 61 questions. In this study, excessive force was defined as a violation of a police department's use-of-force policy by an incumbent officer that was serious enough to warrant a referral to the police psychologist. Background information collected on respondents included years with the department, years as a police psychologist, if the position was salaried or consultant, and how often the psychologist met with the police chief. A battery of questions pertaining to screening was asked, including whether the psychologist performed pre-employment psychological screening and what methods were used to identify job candidates with a propensity to use excessive force. Questions regarding monitoring procedures asked if and how police officer behavior was monitored and if incumbent officers were tested for propensity to use excessive force. Items concerning police training included which officers the psychologist trained, what types of training covering excessive force were conducted, and what modules should be included in training to reduce excessive force. Information about mental health services was elicited, with questions on whether the psychologist counseled officers charged with excessive force, what models were used, how the psychologist knew if the intervention had been successful, what factors limited the effectiveness of counseling police officers, characteristics of officers prone to use excessive force, how these officers are best identified, and who or what has the most influence on these officers. General opinion questions asked about factors that increase excessive force behavior and what services could be utilized to reduce excessive force.
These maps show changes in the number of heat waves per year (frequency); the average length of heat waves in days (duration); the number of days between the first and last heat wave of the year (season length); and how hot the heat waves were, compared with the local temperature threshold for defining a heat wave (intensity). These data were analyzed from 1961 to 2023 for 50 large metropolitan areas. The size of each circle indicates the rate of change per decade. Solid-color circles represent cities where the trend was statistically significant. For more information: www.epa.gov/climate-indicators