9 datasets found
  1. P

    7-Scenes Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Jun 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). 7-Scenes Dataset [Dataset]. https://paperswithcode.com/dataset/7-scenes
    Explore at:
    Dataset updated
    Jun 14, 2016
    Description

    The 7-Scenes dataset is a collection of tracked RGB-D camera frames. The dataset may be used for evaluation of methods for different applications such as dense tracking and mapping and relocalization techniques. All scenes were recorded from a handheld Kinect RGB-D camera at 640×480 resolution. The dataset creators use an implementation of the KinectFusion system to obtain the ‘ground truth’ camera tracks, and a dense 3D model. Several sequences were recorded per scene by different users, and split into distinct training and testing sequence sets.

  2. h

    DSAC* Visual Re-Localization [Data]

    • heidata.uni-heidelberg.de
    application/gzip
    Updated Jan 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Brachmann; Eric Brachmann (2022). DSAC* Visual Re-Localization [Data] [Dataset]. http://doi.org/10.11588/DATA/N07HKC
    Explore at:
    application/gzip(1003726502), application/gzip(30458267947), application/gzip(665852732), application/gzip(1716857010), application/gzip(19735789606)Available download formats
    Dataset updated
    Jan 7, 2022
    Dataset provided by
    heiDATA
    Authors
    Eric Brachmann; Eric Brachmann
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/N07HKChttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/N07HKC

    Description

    Supplementary training data for visual camera re-localization, particularly rendered depth maps to be used in combination with the MSR 7Scenes dataset, and the Stanford 12Scenes dataset, as well as precomputed camera coordinate files for both aforementioned datasets. For more information, also see the code documentation: https://github.com/vislearn/dsacstar.

  3. P

    PoserNet ECCV 2022 data Dataset

    • paperswithcode.com
    Updated Jul 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matteo Taiana; Matteo Toso; Stuart James; Alessio Del Bue (2022). PoserNet ECCV 2022 data Dataset [Dataset]. https://paperswithcode.com/dataset/posernet-eccv-2022-data
    Explore at:
    Dataset updated
    Jul 18, 2022
    Authors
    Matteo Taiana; Matteo Toso; Stuart James; Alessio Del Bue
    Description

    This data is derived from the 7Scenes dataset. It contains graphs used for training PoserNet and for evaluating its performance.

  4. h

    DSAC++ Visual Camera Re-Localization [Data]

    • heidata.uni-heidelberg.de
    application/gzip, zip
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Brachmann; Eric Brachmann (2022). DSAC++ Visual Camera Re-Localization [Data] [Dataset]. http://doi.org/10.11588/DATA/EGCMUU
    Explore at:
    application/gzip(6513544101), zip(6497241306)Available download formats
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    heiDATA
    Authors
    Eric Brachmann; Eric Brachmann
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/EGCMUUhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/EGCMUU

    Description

    Supplementary training data for visual camera re-localization, particularly rendered depth maps to be used in combination with the Cambridge Landmarks dataset. We also provide pre-trained models of our method for the MSR 7Scenes dataset and the Cambridge Landmarks dataset. For more information, also see the code documentation: https://github.com/vislearn/LessMore

  5. P

    12 Scenes Dataset

    • paperswithcode.com
    Updated Nov 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Valentin; Angela Dai; Matthias Nießner; Pushmeet Kohli; Philip Torr; Shahram Izadi; Cem Keskin (2022). 12 Scenes Dataset [Dataset]. https://paperswithcode.com/dataset/12-scenes
    Explore at:
    Dataset updated
    Nov 29, 2022
    Authors
    Julien Valentin; Angela Dai; Matthias Nießner; Pushmeet Kohli; Philip Torr; Shahram Izadi; Cem Keskin
    Description

    Dataset containing RGB-D data of 4 large scenes, comprising a total of 12 rooms, for the purpose of RGB and RGB-D camera relocalization. The RGB-D data was captured using a Structure.io depth sensor coupled with an iPad color camera. Each room was scanned multiple times, with the multiple sequences run through a global bundle adjustment in order to obtain globally aligned camera poses though all sequences of the same scene.

  6. h

    Data from: Expert Sample Consensus (ESAC) for Visual Re-Localization [Data]

    • heidata.uni-heidelberg.de
    application/gzip
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Brachmann; Eric Brachmann (2022). Expert Sample Consensus (ESAC) for Visual Re-Localization [Data] [Dataset]. http://doi.org/10.11588/DATA/GSJE9D
    Explore at:
    application/gzip(307829341), application/gzip(179675013), application/gzip(858479475), application/gzip(487075454), application/gzip(2057170030), application/gzip(2056022332), application/gzip(1331013410)Available download formats
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    heiDATA
    Authors
    Eric Brachmann; Eric Brachmann
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GSJE9Dhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GSJE9D

    Description

    Supplementary training data for visual camera re-localization, particularly pre-computed scene coordinates to the MSR 7Scenes dataset and the Standford 12Scenes dataset. We also provide pre-trained models of our method for the 7Scenes, 12Scenes, Dubrovnik and Aachen (day) datasets. For more information, also see the code documentation: https://github.com/vislearn/esac

  7. W

    GeoRSS feed for the latest Landsat 7 scenes

    • cloud.csiss.gmu.edu
    Updated Mar 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOSS CSR (2019). GeoRSS feed for the latest Landsat 7 scenes [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/georss-feed-for-the-latest-landsat-7-scenes
    Explore at:
    application/x-rss+xmlAvailable download formats
    Dataset updated
    Mar 21, 2019
    Dataset provided by
    GEOSS CSR
    Description

    Newest available Landsat 7 scenes for download (user registration required)

  8. h

    Differentiable RANSAC (DSAC) for Visual Re-Localization [Data]

    • heidata.uni-heidelberg.de
    application/gzip
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Brachmann; Eric Brachmann (2022). Differentiable RANSAC (DSAC) for Visual Re-Localization [Data] [Dataset]. http://doi.org/10.11588/DATA/3JVZSH
    Explore at:
    application/gzip(4147665582)Available download formats
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    heiDATA
    Authors
    Eric Brachmann; Eric Brachmann
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/3JVZSHhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/3JVZSH

    Description

    Pre-trained models of our camera re-localization method for the MSR 7Scenes dataset. For more information, also see the code documentation: https://github.com/cvlab-dresden/DSAC

  9. P

    Indoor-6 Dataset

    • paperswithcode.com
    Updated Dec 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tien Do; Ondrej Miksik; Joseph DeGol; Hyun Soo Park; Sudipta N. Sinha (2022). Indoor-6 Dataset [Dataset]. https://paperswithcode.com/dataset/indoor-6
    Explore at:
    Dataset updated
    Dec 31, 2022
    Authors
    Tien Do; Ondrej Miksik; Joseph DeGol; Hyun Soo Park; Sudipta N. Sinha
    Description

    The Indoor-6 dataset was created from multiple sessions captured in six indoor scenes over multiple days. The pseudo ground truth (pGT) 3D point clouds and camera poses for each scene are computed using COLMAP. All training data uses only colmap reconstruction from training images. Compared to 7-scenes, the scenes in Indoor-6 are larger, have multiple rooms, contains illumination variations as the images span multiple days and different times of day.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2016). 7-Scenes Dataset [Dataset]. https://paperswithcode.com/dataset/7-scenes

7-Scenes Dataset

Explore at:
Dataset updated
Jun 14, 2016
Description

The 7-Scenes dataset is a collection of tracked RGB-D camera frames. The dataset may be used for evaluation of methods for different applications such as dense tracking and mapping and relocalization techniques. All scenes were recorded from a handheld Kinect RGB-D camera at 640×480 resolution. The dataset creators use an implementation of the KinectFusion system to obtain the ‘ground truth’ camera tracks, and a dense 3D model. Several sequences were recorded per scene by different users, and split into distinct training and testing sequence sets.

Search
Clear search
Close search
Google apps
Main menu