Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.
Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As of February 2025, 5.56 billion individuals worldwide were internet users, which amounted to 67.9 percent of the global population. Of this total, 5.24 billion, or 63.9 percent of the world's population, were social media users. Global internet usage Connecting billions of people worldwide, the internet is a core pillar of the modern information society. Northern Europe ranked first among worldwide regions by the share of the population using the internet in 20254. In The Netherlands, Norway and Saudi Arabia, 99 percent of the population used the internet as of February 2025. North Korea was at the opposite end of the spectrum, with virtually no internet usage penetration among the general population, ranking last worldwide. Eastern Asia was home to the largest number of online users worldwide – over 1.34 billion at the latest count. Southern Asia ranked second, with around 1.2 billion internet users. China, India, and the United States rank ahead of other countries worldwide by the number of internet users. Worldwide internet user demographics As of 2024, the share of female internet users worldwide was 65 percent, five percent less than that of men. Gender disparity in internet usage was bigger in African countries, with around a ten percent difference. Worldwide regions, like the Commonwealth of Independent States and Europe, showed a smaller usage gap between these two genders. As of 2024, global internet usage was higher among individuals between 15 and 24 years old across all regions, with young people in Europe representing the most significant usage penetration, 98 percent. In comparison, the worldwide average for the age group 15–24 years was 79 percent. The income level of the countries was also an essential factor for internet access, as 93 percent of the population of the countries with high income reportedly used the internet, as opposed to only 27 percent of the low-income markets.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.
In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
https://www.factmr.com/privacy-policyhttps://www.factmr.com/privacy-policy
The global Earth observation market is evaluated to increase from a value of US$ 6.8 billion in 2024 to US$ 14.6 billion by the end of 2034. The market has been projected to expand at a CAGR of 8% through 2034.
Report Attribute | Detail |
---|---|
Earth Observation Market Size (2024E) | US$ 6.8 Billion |
Projected Market Value (2034F) | US$ 14.6 Billion |
Global Market Growth Rate (2024 to 2034) | 8% CAGR |
China Market Value (2034F) | US$ 1.6 Billion |
Canada Market Growth Rate (2024 to 2034) | 8.5% CAGR |
North America Market Share (2024E) | 23.9% |
East Asia Market Value (2034F) | US$ 3.4 Billion |
Key Companies Profiled | Airbus; BAE Systems; Ball Corporation; Harris Corporation; Lockheed Martin Corporation; MBRSC; Northrop Grumman Corporation; Planet; Raytheon Intelligence & Space; SARsat Arabia. |
Country-wise Insights
Attribute | United States |
---|---|
Market Value (2024E) | US$ 700 Million |
Growth Rate (2024 to 2034) | 8.4% CAGR |
Projected Value (2034F) | US$ 1.6 Billion |
Attribute | China |
---|---|
Market Value (2024E) | US$ 700 Million |
Growth Rate (2024 to 2034) | 8% CAGR |
Projected Value (2034F) | US$ 1.6 Billion |
Category-wise Insights
Attribute | Value-Added Services |
---|---|
Segment Value (2024E) | US$ 4.7 Billion |
Growth Rate (2024 to 2034) | 7.4% CAGR |
Projected Value (2034F) | US$ 9.6 Billion |
Attribute | Defense & Intelligence |
---|---|
Segment Value (2024E) | US$ 1.7 Billion |
Growth Rate (2024 to 2034) | 5.6% CAGR |
Projected Value (2034F) | US$ 2.9 Billion |
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Summary: Week 2: QuizStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) K: Standard K-ESS3-2 - Earth and Human Activity - Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weatherGrade level(s) 1: Standard 1-LS1-1 - From Molecules to Organisms: Structures and Processes - Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needsGrade level(s) K-2: Standard K-2-ETS1-1 - Engineering Design - Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.Grade level(s) 3: Standard 3-PS2-3 - Motion and Stability: Forces and Interactions - Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each otherGrade level(s) 4: Standard 4-PS3-3 - Energy - Ask questions and predict outcomes about the changes in energy that occur when objects collideGrade level(s) 6-8: Standard MS-PS2-3 - Motion and Stability: Forces and Interactions - Ask questions about data to determine the factors that affect the strength of electric and magnetic forcesGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS1-4 - Earth’s Place in the Universe - Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old historyGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 6-8: Standard MS-ESS3-5 - Earth and Human Activity - Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past centuryGrade level(s) 9-12: Standard HS-PS1-3 - Matter and Its Interactions - Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particlesGrade level(s) 9-12: Standard HS-PS1-7 - Matter and Its Interactions - Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reactionGrade level(s) 9-12: Standard HS-PS1-8 - Matter and Its Interactions - Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.Grade level(s) 9-12: Standard HS-PS3-2 - Energy - Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).Grade level(s) 9-12: Standard HS-PS4-2 - Waves and Their Applications in Technologies for Information Transfer - Evaluate questions about the advantages of using digital transmission and storage of informationGrade level(s) 9-12: Standard HS-LS2-1 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scalesGrade level(s) 9-12: Standard HS-LS2-2 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scalesGrade level(s) 9-12: Standard HS-LS3-1 - Heredity: Inheritance and Variation of Traits - Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspringGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:questionscaleApproximate Flesch-Kincaid reading grade level: 9.8. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in World was reported at 49.71 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
How many people use social media? Social media usage is one of the most popular online activities. In 2024, over **** ******* people were using social media worldwide, a number projected to increase to over *** billion in 2028. Who uses social media? Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at ** percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe. How much time do people spend on social media? Social media is an integral part of daily internet usage. On average, internet users spend *** minutes per day on social media and messaging apps, an increase of ** minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media. What are the most popular social media platforms? Market leader Facebook was the first social network to surpass *** billion registered accounts and currently boasts approximately *** billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
In 2023, the global population will reach approximately eight billion people. This is double what the population was just 48 years previously, in 1975, when it reached four billion people. When we compare growth rates over the selected periods, it took an average of 12 years per one billion people between 1975 and 2023, which is almost double the rate of the period between 1928 and 1975, and over ten times faster than growth between 1803 and 1928. Additionally, it took almost 700 years for the world population to increase by 250 million people during the Middle Ages, in contrast, an increase of 250 million has been observed every three to four years since the 1960s.
Summary: Exploring with your class why Everest got tallerStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) K: Standard K-PS2-1 - Motion and Stability: Forces and Interactions - Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an objectGrade level(s) K: Standard K-LS1-1 - From Molecules to Organisms: Structures and Processes - Use observations to describe patterns of what plants and animals (including humans) need to surviveGrade level(s) K: Standard K-ESS2-1 - Earth's Systems - Use and share observations of local weather conditions to describe patterns over timeGrade level(s) K: Standard K-ESS3-1 - Earth and Human Activity - Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they liveGrade level(s) 1: Standard 1-PS4-3 - Waves and their Applications in Technologies for Information Transfer - Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of lightGrade level(s) 1: Standard 1-ESS1-2 - Earth’s Place in the Universe - Make observations at different times of year to relate the amount of daylight to the time of yearGrade level(s) 2: Standard 2-PS1-1 - Matter and its Interactions - Plan and conduct an investigation to describe and classify different kinds of materials by their observable propertiesGrade level(s) 2: Standard 2-PS1-2 - Matter and its Interactions - Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purposeGrade level(s) 2: Standard 2-PS1-4 - Matter and its Interactions - Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannotGrade level(s) 2: Standard 2-LS4-1 - Biological Evolution: Unity and Diversity - Make observations of plants and animals to compare the diversity of life in different habitatsGrade level(s) 2: Standard 2-ESS2-1 - Earth’s Systems - Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the landGrade level(s) 3: Standard 3-ESS2-2 - Earth’s Systems - Obtain and combine information to describe climates in different regions of the worldGrade level(s) 4: Standard 4-LS1-2 - From Molecules to Organisms: Structures and Processes - Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different waysGrade level(s) 4: Standard 4-ESS1-1 - Earth’s Place in the Universe - Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over timeGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS2-1 - Earth’s Systems - Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.Grade level(s) 6-8: Standard MS-PS1-1 - Matter and Its Interactions - Develop models to describe the atomic composition of simple molecules and extended structuresGrade level(s) 6-8: Standard MS-PS3-2 - Energy - Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the systemGrade level(s) 6-8: Standard MS-PS3-2 - Energy - Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the systemGrade level(s) 6-8: Standard MS-PS3-4 - Energy - Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sampleGrade level(s) 6-8: Standard MS-LS1-1 - From Molecules to Organisms: Structures and Processes - Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cellsGrade level(s) 6-8: Standard MS-LS1-5 - From Molecules to Organisms: Structures and Processes - Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organismsGrade level(s) 6-8: Standard MS-LS2-2 - Ecosystems: Interactions, Energy, and Dynamics - Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystemsGrade level(s) 6-8: Standard MS-LS3-1 - Heredity: Inheritance and Variation of Traits - Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organismGrade level(s) 6-8: Standard MS-LS4-3 - Biological Evolution: Unity and Diversity - Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.Grade level(s) 6-8: Standard MS-ESS1-4 - Earth’s Place in the Universe - Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old historyGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 6-8: Standard MS-ESS2-3 - Earth’s Systems - Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.Grade level(s) 6-8: Standard MS-ESS2-5 - Earth’s Systems - Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditionsGrade level(s) 9-12: Standard HS-PS1-6 - Matter and Its Interactions - Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibriumGrade level(s) 9-12: Standard HS-PS3-4 - Energy - Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).Grade level(s) 9-12: Standard HS-PS4-4 - Waves and Their Applications in Technologies for Information Transfer - Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.Grade level(s) 9-12: Standard HS-LS1-4 - From Molecules to Organisms: Structures and Processes - Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.Grade level(s) 9-12: Standard HS-LS2-1 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scalesGrade level(s) 9-12: Standard HS-LS2-2 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scalesGrade level(s) 9-12: Standard HS-LS2-3 - Ecosystems: Interactions, Energy, and Dynamics - Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditionsGrade level(s) 9-12: Standard HS-ESS1-3 - Earth’s Place in the Universe - Communicate scientific ideas about the way stars, over their life cycle, produce elementsGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Grade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Grade level(s) 9-12: Standard HS-ESS2-5 - Earth’s Systems - Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processesMost frequently used words:heightmeasuringeverestmountaindifferentApproximate Flesch-Kincaid reading grade level: 9.8. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global space launch market size was valued at approximately $12 billion in 2023 and is projected to reach about $25 billion by 2032, expanding at a compound annual growth rate (CAGR) of 8%. This significant growth is driven by factors such as increasing investments in space technologies, the rapid commercialization of space activities, and the growing demand for satellite deployment for various applications. Governments and private organizations alike are investing heavily to enhance their capabilities in space exploration, which is fueling innovations and expanding the market horizons. The heightened interest in establishing satellite networks for global internet coverage, Earth observation, and other applications is likely to sustain market growth over the forecast period.
The surging demand for small satellites is one of the key growth factors for the space launch market. These compact, lightweight satellites, commonly referred to as CubeSats or nanosatellites, are becoming increasingly popular due to their cost-effectiveness and versatility in a variety of applications such as telecommunications, scientific research, and military surveillance. As technology advances, the capabilities of these small satellites continue to improve, prompting more commercial and government entities to invest in small satellite constellations. This burgeoning interest is driving the need for frequent and cost-efficient launch services, thereby spurring market growth.
Another significant growth driver is the increasing participation of private companies in space exploration. The entrance of private players like SpaceX, Blue Origin, and Rocket Lab has transformed the landscape of space launch services. These companies are innovating with reusable rocket technologies and reducing the cost of access to space. With their ability to offer more frequent and flexible launch schedules, they are meeting the growing demand for satellite launches and opening new opportunities for scientific and commercial missions. These advancements are expected to lower barriers to entry for various industries and encourage more stakeholders to invest in space-related ventures.
The rise in government investments and international collaborations is also fueling the growth of the space launch market. Governments worldwide are increasing their budgets for space exploration to enhance national security, scientific understanding, and economic opportunities. Countries like the United States, China, and India are leading the way with ambitious space programs, including lunar and Mars missions, which require advanced launch capabilities. Additionally, international partnerships and collaborative projects like the European Space Agency's initiatives are fostering innovation and technological development, further driving the market's expansion.
The Space Launch System (SLS) is a pivotal element in the future of space exploration, designed to carry astronauts and cargo beyond low Earth orbit, including missions to the Moon and Mars. As the most powerful rocket ever built, the SLS is expected to play a crucial role in NASA's Artemis program, which aims to return humans to the lunar surface and establish a sustainable presence there by the end of the decade. With its unprecedented lift capacity, the SLS will enable the transportation of large payloads and complex scientific instruments, facilitating a new era of deep space exploration. The development of the SLS is a testament to the collaborative efforts between NASA and its industry partners, showcasing the potential of public-private partnerships in advancing space technology.
Regionally, North America, especially the United States, continues to dominate the space launch market due to the presence of established space agencies such as NASA and private companies like SpaceX. However, Asia Pacific is witnessing rapid growth, primarily driven by China and India, who are investing heavily in space technology and infrastructure. Europe also plays a significant role, with countries like France and the United Kingdom enhancing their space capabilities through regional collaboration and investment. The Middle East & Africa and Latin America are gradually emerging as potential markets, as these regions begin to recognize the strategic and economic benefits of investing in space activities.
In the space launch market, the vehicle type segment is categorized into orbital and suborbi
In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.
As of 2024, the estimated number of internet users worldwide was 5.5 billion, up from 5.3 billion in the previous year. This share represents 68 percent of the global population. Internet access around the world Easier access to computers, the modernization of countries worldwide, and increased utilization of smartphones have allowed people to use the internet more frequently and conveniently. However, internet penetration often pertains to the current state of development regarding communications networks. As of January 2023, there were approximately 1.05 billion total internet users in China and 692 million total internet users in the United States. Online activities Social networking is one of the most popular online activities worldwide, and Facebook is the most popular online network based on active usage. As of the fourth quarter of 2023, there were over 3.07 billion monthly active Facebook users, accounting for well more than half of the internet users worldwide. Connecting with family and friends, expressing opinions, entertainment, and online shopping are amongst the most popular reasons for internet usage.
Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.