8 datasets found
  1. Z

    AbDb processed and pickled for use in deep learning CDR-H3 Structure...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blundell, Benjamin; Martin, Andrew (2020). AbDb processed and pickled for use in deep learning CDR-H3 Structure prediction [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_2560435
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    King's College London
    University College London
    Authors
    Blundell, Benjamin; Martin, Andrew
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a pickle file, ready for training by the neural network described in "Improving CDR-H3 modelling in Antibodies" found at the following URL:

    https://github.com/OniDaito/MRes

    The data is derived from the AbDb dataset found at:

    http://www.bioinf.org.uk/abs/abdb/

  2. g

    eu_df55d864-17a3-4647-abdb-5377ba446092_1 | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    eu_df55d864-17a3-4647-abdb-5377ba446092_1 | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_df55d864-17a3-4647-abdb-5377ba446092_1/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This training survey in Geological Exploration took place on board the Marine Institute's R.V. Celtic Voyager in Cork Harbour. Three instructors delivered 6 days of training to postgraduate and undergraduate students from University College Cork (UCC) from the 24th to 29th of November 2017. These training surveys arise from a learning module in multidisciplinary offshore marine science developed by the Strategic Marine Alliance for Research and Training (SMART) in 2011 . The objective of this SMART UCC training programme was to provide offshore training for Geology and Earth and Environmental Science undergraduates and Exploration Field Geology postgraduates in offshore geoscience. Overall, the training provided practical training in: • seabed mapping techniques and practice; • seabed sampling techniques and practice; • sub-seabed imaging techniques and practice; • offshore geological data collection; • evaluation of resource and resource assessment.

  3. FBIP: IZIKO Marine Bony Fish (1884-2013)

    • gbif.org
    • demo.gbif.org
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albe Bosman; Albe Bosman (2019). FBIP: IZIKO Marine Bony Fish (1884-2013) [Dataset]. http://doi.org/10.15468/rnpcwh
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    South African National Biodiversity Institute
    Authors
    Albe Bosman; Albe Bosman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Iziko South African Museum has a comprehensive holdings comprising of identified bony and cartilaginous fish, mostly from Cape waters, but extending to Angola and Mozambique and the Southern, Indian and Atlantic Oceans

  4. e

    Inspire data set BPL “Im Friederikele 2.Change”

    • data.europa.eu
    • gimi9.com
    wfs, wms
    Updated Jan 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Inspire data set BPL “Im Friederikele 2.Change” [Dataset]. https://data.europa.eu/data/datasets/ca8a6eb9-f80a-4beb-abdb-d3f9d4afd776
    Explore at:
    wms, wfsAvailable download formats
    Dataset updated
    Jan 9, 2021
    Description

    According to INSPIRE transformed development plan “Im Friederikele 2.Change” of the city of Bietigheim-Bissingen based on an XPlanung dataset in version 5.0.

  5. R

    Raw data from external antibody databases and scripts to homogenize and...

    • entrepot.recherche.data.gouv.fr
    application/x-gzip +1
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas MAILLET; Nicolas MAILLET; Simon MALESYS; Simon MALESYS (2025). Raw data from external antibody databases and scripts to homogenize and standardize them used to build AntiBody Sequence Database (for reproducibility) [Dataset]. http://doi.org/10.57745/DDLHWU
    Explore at:
    application/x-gzip(620431), application/x-gzip(163643), application/x-gzip(6833391387), text/markdown(12475), application/x-gzip(80726198), application/x-gzip(65497009)Available download formats
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    Recherche Data Gouv
    Authors
    Nicolas MAILLET; Nicolas MAILLET; Simon MALESYS; Simon MALESYS
    License

    https://entrepot.recherche.data.gouv.fr/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.57745/DDLHWUhttps://entrepot.recherche.data.gouv.fr/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.57745/DDLHWU

    Description

    Reproducibility data for the AntiBody Sequence Database (ABSD) article. This dataset contains the raw data (antibody sequences) extracted on June 20, 2024, from various databases, as well as the several scripts, to ensure the reproducibility of our results. External databases used: ABDB, AbPDB, CoV-AbDab, Genbank, IMGT, PDB, SACS, SAbDab, TheraSAbDab, UniProt, KABAT Scripts usage: each external database has a corresponding script to format all antibody sequences extracted from it. A last script enable merging all extracted antibody sequences while removing redundancy, standardizing and cleaning data.

  6. Meps 2.5 km pressure level parameters from ensemble member 4...

    • data.met.no
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Senter for utvikling av værvarslingstjenesten (2025). Meps 2.5 km pressure level parameters from ensemble member 4 2025-06-18T10:00:00Z + 66 hours [Dataset]. https://data.met.no/dataset/8956e8bf-abdb-42b4-b102-05765ba06cae
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Norwegian Meteorological Institutehttp://met.no/
    Authors
    Senter for utvikling av værvarslingstjenesten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 18, 2025 - Jun 21, 2025
    Area covered
    Description

    This file contains pressure level parameters from ensemble member 4. For more information, please visit https://github.com/metno/NWPdocs/wiki

  7. Meps 2.5 km pressure level parameters from ensemble member 1...

    • data.met.no
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Senter for utvikling av værvarslingstjenesten (2024). Meps 2.5 km pressure level parameters from ensemble member 1 2024-08-23T18:00:00Z + 66 hours [Dataset]. https://data.met.no/dataset/46a17fd4-abdb-4303-a236-b54c028339d9
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    Norwegian Meteorological Institutehttp://met.no/
    Authors
    Senter for utvikling av værvarslingstjenesten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 23, 2024 - Aug 26, 2024
    Area covered
    Description

    This file contains pressure level parameters from ensemble member 1. For more information, please visit https://github.com/metno/NWPdocs/wiki

  8. t

    Kirchstraße 2 (1. Änderung)

    • service.tib.eu
    • data.europa.eu
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Kirchstraße 2 (1. Änderung) [Dataset]. https://service.tib.eu/ldmservice/dataset/govdata_ea6a007b-7b37-498c-abdb-4a5d973e2e60--1
    Explore at:
    Dataset updated
    Feb 4, 2025
    Description

    Kirchstraße 2 (1. Änderung) im Datenformat XPlanGML Version 5.1.2

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Blundell, Benjamin; Martin, Andrew (2020). AbDb processed and pickled for use in deep learning CDR-H3 Structure prediction [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_2560435

AbDb processed and pickled for use in deep learning CDR-H3 Structure prediction

Explore at:
Dataset updated
Jan 24, 2020
Dataset provided by
King's College London
University College London
Authors
Blundell, Benjamin; Martin, Andrew
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This is a pickle file, ready for training by the neural network described in "Improving CDR-H3 modelling in Antibodies" found at the following URL:

https://github.com/OniDaito/MRes

The data is derived from the AbDb dataset found at:

http://www.bioinf.org.uk/abs/abdb/

Search
Clear search
Close search
Google apps
Main menu