The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report does not assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. Since 2021, reports run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 11 July 2024 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Note: from 11 August 2022, we have switched to producing this report as a webpage and have converted the previous 4 reports from this season to webpages as well. This improves the readability of the report for a wider range of devices, including screen readers and mobile devices.
The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 14 July 2022 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk.
The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 13 July 2023 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Public Health England’s (PHE) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. PHE investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 15 July to the present.
Reports are also available for:
Public Health England’s (PHE’s) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates, or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. PHE investigates any spikes seen which may inform public health actions.
We publish a weekly report in the winter season (October to May) and a fortnightly report during the summer months (June to September).
This page includes reports published between 9 October 2014 and 24 September 2015.
Previous 2013 to 2014 reports are also available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundGlobally in 2016, 1.7 million people died of Tuberculosis (TB). This study aimed to estimate all-cause mortality rate, identify features associated with mortality and describe trend in mortality rate from treatment initiation.MethodA 5-year (2012–2016) retrospective analysis of electronic TB surveillance data from Kilifi County, Kenya. The outcome was all-cause mortality within 180 days after starting TB treatment. The risk factors examined were demographic and clinical features at the time of starting anti-TB treatment. We performed survival analysis with time at risk defined from day of starting TB treatment to time of death, lost-to-follow-up or completing treatment. To account for ‘lost-to-follow-up’ we used competing risk analysis method to examine risk factors for all-cause mortality.Results10,717 patients receiving TB treatment, median (IQR) age 33 (24–45) years were analyzed; 3,163 (30%) were HIV infected. Overall, 585 (5.5%) patients died; mortality rate of 12.2 (95% CI 11.3–13.3) deaths per 100 person-years (PY). Mortality rate increased from 7.8 (95% CI 6.4–9.5) in 2012 to 17.7 (95% CI 14.9–21.1) in 2016 per 100PY (Ptrend
https://momo.isciii.es/public/momo/dashboard/momo_dashboard.html#datoshttps://momo.isciii.es/public/momo/dashboard/momo_dashboard.html#datos
MoMo is a system for the surveillance of daily all-cause mortality in Spain. It aims to identify unusual patterns of mortality and to estimate the impact on population mortality of any event of importance to guide Public Health action.
Data collection started in 2004.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19 dramatically influenced mortality worldwide, in Italy as well, the first European country to experience the Sars-Cov2 epidemic. Many countries reported a two-wave pattern of COVID-19 deaths; however, studies comparing the two waves are limited. The objective of the study was to compare all-cause excess mortality between the two waves that occurred during the year 2020 using nationwide data. All-cause excess mortalities were estimated using negative binomial models with time modeled by quadratic splines. The models were also applied to estimate all-cause excess deaths “not directly attributable to COVD-19”, i.e., without a previous COVID-19 diagnosis. During the first wave (25th February−31st May), we estimated 52,437 excess deaths (95% CI: 49,213–55,863) and 50,979 (95% CI: 50,333–51,425) during the second phase (10th October−31st December), corresponding to percentage 34.8% (95% CI: 33.8%–35.8%) in the second wave and 31.0% (95%CI: 27.2%–35.4%) in the first. During both waves, all-cause excess deaths percentages were higher in northern regions (59.1% during the first and 42.2% in the second wave), with a significant increase in the rest of Italy (from 6.7% to 27.1%) during the second wave. Males and those aged 80 or over were the most hit groups with an increase in both during the second wave. Excess deaths not directly attributable to COVID-19 decreased during the second phase with respect to the first phase, from 10.8% (95% CI: 9.5%–12.4%) to 7.7% (95% CI: 7.5%–7.9%), respectively. The percentage increase in excess deaths from all causes suggests in Italy a different impact of the SARS-CoV-2 virus during the second wave in 2020. The decrease in excess deaths not directly attributable to COVID-19 may indicate an improvement in the preparedness of the Italian health care services during this second wave, in the detection of COVID-19 diagnoses and/or clinical practice toward the other severe diseases.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Estimates of excess deaths can provide information about the burden of mortality potentially related to the COVID-19 pandemic, including deaths that are directly or indirectly attributed to COVID-19. Excess deaths are typically defined as the difference between the observed numbers of deaths in specific time periods and expected numbers of deaths in the same time periods. This visualization provides weekly estimates of excess deaths by the jurisdiction in which the death occurred. Weekly counts of deaths are compared with historical trends to determine whether the number of deaths is significantly higher than expected.Counts of deaths from all causes of death, including COVID-19, are presented. As some deaths due to COVID-19 may be assigned to other causes of deaths (for example, if COVID-19 was not diagnosed or not mentioned on the death certificate), tracking all-cause mortality can provide information about whether an excess number of deaths is observed, even when COVID-19 mortality may be undercounted. Additionally, deaths from all causes excluding COVID-19 were also estimated. Comparing these two sets of estimates — excess deaths with and without COVID-19 — can provide insight about how many excess deaths are identified as due to COVID-19, and how many excess deaths are reported as due to other causes of death. These deaths could represent misclassified COVID-19 deaths, or potentially could be indirectly related to the COVID-19 pandemic (e.g., deaths from other causes occurring in the context of health care shortages or overburdened health care systems).Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). A range of values for the number of excess deaths was calculated as the difference between the observed count and one of two thresholds (either the average expected count or the upper bound of the 95% prediction interval), by week and jurisdiction.Provisional death counts are weighted to account for incomplete data. However, data for the most recent week(s) are still likely to be incomplete. Weights are based on completeness of provisional data in prior years, but the timeliness of data may have changed in 2020 relative to prior years, so the resulting weighted estimates may be too high in some jurisdictions and too low in others. As more information about the accuracy of the weighted estimates is obtained, further refinements to the weights may be made, which will impact the estimates. Any changes to the methods or weighting algorithm will be noted in the Technical Notes when they occur. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.This visualization includes several different estimates:Number of excess deaths: A range of estimates for the number of excess deaths was calculated as the difference between the observed count and one of two thresholds (either the average expected count or the upper bound threshold), by week and jurisdiction. Negative values, where the observed count fell below the threshold, were set to zero.Percent excess: The percent excess was defined as the number of excess deaths divided by the threshold.Total number of excess deaths: The total number of excess deaths in each jurisdiction was calculated by summing the excess deaths in each week, from February 1, 2020 to present. Similarly, the total number of excess deaths for the US overall was computed as a sum of jurisdiction-specific numbers of excess deaths (with negative values set to zero), and not directly estimated using the Farrington surveillance algorithms.Select a dashboard from the menu, then click on “Update Dashboard” to navigate through the different graphics.The first dashboard shows the weekly predicted counts of deaths from all causes, and the threshold for the expected number of deaths. Select a jurisdiction from the drop-down menu to show data for that jurisdiction.The second dashboard shows the weekly predicted counts of deaths from all causes and the weekly count of deaths from all causes excluding COVID-19. Select a jurisdiction from the drop-down menu to show data for that jurisdiction.The th
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
Cause of death data based on VA interviews were contributed by fourteen INDEPTH HDSS sites in sub-Saharan Africa and eight sites in Asia. The principles of the Network and its constituent population surveillance sites have been described elsewhere [1]. Each HDSS site is committed to long-term longitudinal surveillance of circumscribed populations, typically each covering around 50,000 to 100,000 people. Households are registered and visited regularly by lay field-workers, with a frequency varying from once per year to several times per year. All vital events are registered at each such visit, and any deaths recorded are followed up with verbal autopsy interviews, usually 147 undertaken by specially trained lay interviewers. A few sites were already operational in the 1990s, but in this dataset 95% of the person-time observed related to the period from 2000 onwards, with 58% from 2007 onwards. Two sites, in Nairobi and Ouagadougou, followed urban populations, while the remainder covered areas that were generally more rural in character, although some included local urban centres. Sites covered entire populations, although the Karonga, Malawi, site only contributed VAs for deaths of people aged 12 years and older. Because the sites were not located or designed in a systematic way to be representative of national or regional populations, it is not meaningful to aggregate results over sites.
All cause of death assignments in this dataset were made using the InterVA-4 model version 4.02 [2]. InterVA-4 uses probabilistic modelling to arrive at likely cause(s) of death for each VA case, the workings of the model being based on a combination of expert medical opinion and relevant available data. InterVA-4 is the only model currently available that processes VA data according to the WHO 2012 standard and categorises causes of death according to ICD-10. Since the VA data reported here were collected before the WHO 2012 standard was formulated, they were all retrospectively transformed into the WHO 2012 and InterVA-4 input format for processing.
The InterVA-4 model was applied to the data from each site, yielding, for each case, up to three possible causes of death or an indeterminate result. Each cause for a case is a single record in the dataset. In a minority of cases, for example where symptoms were vague, contradictory or mutually inconsistent, it was impossible for InterVA-4 to determine a cause of death, and these deaths were attributed as entirely indeterminate. For the remaining cases, one to three likely causes and their likelihoods were assigned by InterVA-4, and if the sum of their likelihoods was less than one, the residual component was then assigned as being indeterminate. This was an important process for capturing uncertainty in cause of death outcome(s) from the model at the individual level, thus avoiding over-interpretation of specific causes. As a consequence there were three sources of unattributed cause of death: deaths registered for which VAs were not successfully completed; VAs completed but where the cause was entirely indeterminate; and residual components of deaths attributed as indeterminate.
In this dataset each case has between one and four records, each with its own cause and likelihood. Cases for which VAs were not successfully completed has a single record with the cause of death recorded as “VA not completed” and a likelihood of one. Thus the overall sum of the likelihoods equated to the total number of deaths. Each record also contains a population weighting factor reflecting the ratio of the population fraction for its site, age group, sex and year to the corresponding age group and sex fraction in the standard population (see section on weighting).
In this context, all of these data are secondary datasets derived from primary data collected separately by each participating site. In all cases the primary data collection was covered by site-level ethical approvals relating to on-going demographic surveillance in those specific locations. No individual identity or household location data are included in this secondary data.
Sankoh O, Byass P. The INDEPTH Network: filling vital gaps in global epidemiology. International Journal of Epidemiology 2012; 41:579-588.
Byass P, Chandramohan D, Clark SJ, D’Ambruoso L, Fottrell E, Graham WJ, et al. Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. Global Health Action 2012; 5:19281.
Demographic surveiallance areas (countries from Africa, Asia and Oceania) of the following HDSSs:
Code Country INDEPTH Centre
BD011 Bangladesh ICDDR-B : Matlab
BD012 Bangladesh ICDDR-B : Bandarban
BD013 Bangladesh ICDDR-B : Chakaria
BD014 Bangladesh ICDDR-B : AMK BF031 Burkina Faso Nouna BF041 Burkina Faso Ouagadougou
CI011 Côte d'Ivoire Taabo ET031 Ethiopia Kilite Awlaelo
GH011 Ghana Navrongo
GH031 Ghana Dodowa
GM011 The Gambia Farafenni ID011 Indonesia Purworejo IN011 India Ballabgarh
IN021 India Vadu
KE011 Kenya Kilifi
KE021 Kenya Kisumu
KE031 Kenya Nairobi
MW011 Malawi Karonga
SN011 Senegal IRD : Bandafassi VN012 Vietnam Hanoi Medical University : Filabavi
ZA011 South Africa Agincourt ZA031 South Africa Africa Centre
Death Cause
Surveillance population Deceased individuals Cause of death
Verbal autopsy-based cause of death data
Rounds per year varies between sites from once to three times per year
No sampling, covers total population in demographic surveillance area
Face-to-face [f2f]
The Verbal Autopsy Questionnaires used by the various sites differed, but in most cases they were a derivation from the original WHO Verbal Autopsy questionnaire.
http://www.who.int/healthinfo/statistics/verbalautopsystandards/en/index1.html
One cause of death record was inserted for every death where a verbal autopsy was not conducted. The cuase of death assigned in these cases is "XX VA not completed"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of the TB patients at the time of initiating TB treatment in Kilifi County, Kenya.
This data visualization presents county-level provisional counts for drug overdose deaths based on a current flow of mortality data in the National Vital Statistics System. County-level provisional counts include deaths occurring within the 50 states and the District of Columbia, as of the date specified and may not include all deaths that occurred during a given time period. Provisional counts are often incomplete and causes of death may be pending investigation resulting in an underestimate relative to final counts (see Technical Notes). The provisional data presented on the dashboard below include reported 12 month-ending provisional counts of death due to drug overdose by the decedent’s county of residence and the month in which death occurred. Percentages of deaths with a cause of death pending further investigation and a note on historical completeness (e.g. if the percent completeness was under 90% after 6 months) are included to aid in interpretation of provisional data as these measures are related to the accuracy of provisional counts (see Technical Notes). Counts between 1-9 are suppressed in accordance with NCHS confidentiality standards. Provisional data presented on this page will be updated on a quarterly basis as additional records are received. Technical Notes Nature and Sources of Data Provisional drug overdose death counts are based on death records received and processed by the National Center for Health Statistics (NCHS) as of a specified cutoff date. The cutoff date is generally the first Sunday of each month. National provisional estimates include deaths occurring within the 50 states and the District of Columbia. NCHS receives the death records from the state vital registration offices through the Vital Statistics Cooperative Program (VSCP). The timeliness of provisional mortality surveillance data in the National Vital Statistics System (NVSS) database varies by cause of death and jurisdiction in which the death occurred. The lag time (i.e., the time between when the death occurred and when the data are available for analysis) is longer for drug overdose deaths compared with other causes of death due to the time often needed to investigate these deaths (1). Thus, provisional estimates of drug overdose deaths are reported 6 months after the date of death. Provisional death counts presented in this data visualization are for “12 month-ending periods,” defined as the number of deaths occurring in the 12 month period ending in the month indicated. For example, the 12 month-ending period in June 2020 would include deaths occurring from July 1, 2019 through June 30, 2020. The 12 month-ending period counts include all seasons of the year and are insensitive to reporting variations by seasonality. These provisional counts of drug overdose deaths and related data quality metrics are provided for public health surveillance and monitoring of emerging trends. Provisional drug overdose death data are often incomplete, and the degree of completeness varies by jurisdiction and 12 month-ending period. Consequently, the numbers of drug overdose deaths are underestimated based on provisional data relative to final data and are subject to random variation. Cause of Death Classification and Definition of Drug Deaths Mortality statistics are compiled in accordance with the World Health Organizations (WHO) regulations specifying that WHO member nations classify and code causes of death with the current revision of the International Statistical Classification of Diseases and Related Health Problems (ICD). ICD provides the basic guidance used in virtually all countries to code and classify causes of death. It provides not only disease, injury, and poisoning categories but also the rules used to select the single underlying cause of death for tabulation from the several diagnoses that may be reported on a single death certificate, as well as definitions, tabulation lists, the format of the death certificate, and regul
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper contributes evidence documenting the continued decline in all-cause mortality and changes in the cause of death distribution over time in four developing country populations in Africa and Asia. We present levels and trends in age-specific mortality (all-cause and cause-specific) from four demographic surveillance sites: Agincourt (South Africa), Navrongo (Ghana) in Africa; Filabavi (Vietnam), Matlab (Bangladesh) in Asia. We model mortality using discrete time event history analysis. This study illustrates how data from INDEPTH Network centers can provide a comparative, longitudinal examination of mortality patterns and the epidemiological transition. Health care systems need to be reconfigured to deal simultaneously with continuing challenges of communicable disease and increasing incidence of non-communicable diseases that require long-term care. In populations with endemic HIV, long-term care of HIV patients on ART will add to the chronic care needs of the community.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The impact of the COVID-19 pandemic on pediatric mortality, including measures to ensure continuity of HIV care, is not well described in Kenya. We evaluated causes of death (COD) among decedents under 5 years of age both before and during the COVID-19 pandemic in Kenya. We analyzed Child Health and Mortality Prevention Surveillance (CHAMPS) data collected in February 2018–March 2022. We describe the proportional contribution of specific conditions in the causal chain of death among decedents aged 28 days to 59 months who underwent minimally invasive tissue (MITS) sampling, had an HIV polymerase chain reaction, and a COD determination. We also calculated all-cause and HIV cause-specific mortality rates using data from two health and demographic surveillance system (HDSS) sites in western Kenya. Results were stratified by time periods: February 2018 to February 2020, and March 2020 to March 2022. Among 269 MITS-eligible decedents, 55.8% died during the pre-COVID period. Of these, 53.7% were infants (28 days to 11 months), and 9.7% were HIV-positive. Leading causes of death for infants included malnutrition (20.5%), pneumonia (17.5%), sepsis (17.1%), and malaria (14.5%). For older children (12–59 months), the predominant causes were malaria (25.6%), malnutrition (21.1%), pneumonia (14.1%), and sepsis (13.1%). All-cause mortality rates did not differ significantly between the periods (53.9 vs. 52.8 per 1,000 live births, p=0.77), but HIV cause-specific mortality rates were significantly lower during March 2020–March 2022 compared to February 2018–February 2020 (1.2 vs. 3.1 per 1,000 live births, p=0.01). Malaria, malnutrition, pneumonia, and sepsis were the leading COD among decedents aged 28 days to 59 months enrolled in CHAMPS between February 2018 and March 2022. These findings may point to the need for urgent, focused efforts to prevent avoidable child deaths. Continued monitoring of HIV-related mortality could provide insights into the ongoing impact of the HIV program in the region.
This data contains provisional counts for drug overdose deaths based on a current flow of mortality data in the National Vital Statistics System. Counts for the most recent final annual data are provided for comparison. National provisional counts include deaths occurring within the 50 states and the District of Columbia as of the date specified and may not include all deaths that occurred during a given time period. Provisional counts are often incomplete and causes of death may be pending investigation (see Technical notes) resulting in an underestimate relative to final counts. To address this, methods were developed to adjust provisional counts for reporting delays by generating a set of predicted provisional counts (see Technical notes). Starting in June 2018, this monthly data release will include both reported and predicted provisional counts.
The provisional data include: (a) the reported and predicted provisional counts of deaths due to drug overdose occurring nationally and in each jurisdiction; (b) the percentage changes in provisional drug overdose deaths for the current 12 month-ending period compared with the 12-month period ending in the same month of the previous year, by jurisdiction; and (c) the reported and predicted provisional counts of drug overdose deaths involving specific drugs or drug classes occurring nationally and in selected jurisdictions. The reported and predicted provisional counts represent the numbers of deaths due to drug overdose occurring in the 12-month periods ending in the month indicated. These counts include all seasons of the year and are insensitive to variations by seasonality. Deaths are reported by the jurisdiction in which the death occurred.
Several data quality metrics, including the percent completeness in overall death reporting, percentage of deaths with cause of death pending further investigation, and the percentage of drug overdose deaths with specific drugs or drug classes reported are included to aid in interpretation of provisional data as these measures are related to the accuracy of provisional counts (see Technical notes). Reporting of the specific drugs and drug classes involved in drug overdose deaths varies by jurisdiction, and comparisons of death rates involving specific drugs across selected jurisdictions should not be made (see Technical notes). Provisional data will be updated on a monthly basis as additional records are received.
Technical notes
Nature and sources of data
Provisional drug overdose death counts are based on death records received and processed by the National Center for Health Statistics (NCHS) as of a specified cutoff date. The cutoff date is generally the first Sunday of each month. National provisional estimates include deaths occurring within the 50 states and the District of Columbia. NCHS receives the death records from state vital registration offices through the Vital Statistics Cooperative Program (VSCP).
The timeliness of provisional mortality surveillance data in the National Vital Statistics System (NVSS) database varies by cause of death. The lag time (i.e., the time between when the death occurred and when the data are available for analysis) is longer for drug overdose deaths compared with other causes of death (1). Thus, provisional estimates of drug overdose deaths are reported 6 months after the date of death.
Provisional death counts presented in this data visualization are for “12-month ending periods,” defined as the number of deaths occurring in the 12-month period ending in the month indicated. For example, the 12-month ending period in June 2017 would include deaths occurring from July 1, 2016, through June 30, 2017. The 12-month ending period counts include all seasons of the year and are insensitive to reporting variations by seasonality. Counts for the 12-month period ending in the same month of the previous year are shown for comparison. These provisional counts of drug overdose deaths and related data quality metrics are provided for public health surveillance and monitoring of emerging trends. Provisional drug overdose death data are often incomplete, and the degree of completeness varies by jurisdiction and 12-month ending period. Consequently, the numbers of drug overdose deaths are underestimated based on provisional data relative to final data and are subject to random variation. Methods to adjust provisional counts have been developed to provide predicted provisional counts of drug overdose deaths, accounting for delayed reporting (see Percentage of records pending investigation and Adjustments for delayed reporting).
Provisional data are based on available records that meet certain data quality criteria at the time of analysis and may not include all deaths that occurred during a given time period. Therefore, they should not be considered comparable with final data and are subject to change.
Cause-of-death classification and definition of drug deaths
Mortality statistics are compiled in accordance with World Health Organization (WHO) regulations specifying that WHO member nations classify and code causes of death with the current revision of the International Statistical Classification of Diseases and Related Health Problems (ICD). ICD provides the basic guidance used in virtually all countries to code and classify causes of death. It provides not only disease, injury, and poisoning categories but also the rules used to select the single underlying cause of death for tabulation from the several diagnoses that may be reported on a single death certificate, as well as definitions, tabulation lists, the format of the death certificate, and regulations on use of the classification. Causes of death for data presented in this report were coded according to ICD guidelines described in annual issues of Part 2a of the NCHS Instruction Manual (2).
Drug overdose deaths are identified using underlying cause-of-death codes from the Tenth Revision of ICD (ICD–10): X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), and Y10–Y14 (undetermined). Drug overdose deaths involving selected drug categories are identified by specific multiple cause-of-death codes. Drug categories presented include: heroin (T40.1); natural opioid analgesics, including morphine and codeine, and semisynthetic opioids, including drugs such as oxycodone, hydrocodone, hydromorphone, and oxymorphone (T40.2); methadone, a synthetic opioid (T40.3); synthetic opioid analgesics other than methadone, including drugs such as fentanyl and tramadol (T40.4); cocaine (T40.5); and psychostimulants with abuse potential, which includes methamphetamine (T43.6). Opioid overdose deaths are identified by the presence of any of the following MCOD codes: opium (T40.0); heroin (T40.1); natural opioid analgesics (T40.2); methadone (T40.3); synthetic opioid analgesics other than methadone (T40.4); or other and unspecified narcotics (T40.6). This latter category includes drug overdose deaths where ‘opioid’ is reported without more specific information to assign a more specific ICD–10 code (T40.0–T40.4) (3,4). Among deaths with an underlying cause of drug overdose, the percentage with at least one drug or drug class specified is defined as that with at least one ICD–10 multiple cause-of-death code in the range T36–T50.8.
Drug overdose deaths may involve multiple drugs; therefore, a single death might be included in more than one category when describing the number of drug overdose deaths involving specific drugs. For example, a death that involved both heroin and fentanyl would be included in both the number of drug overdose deaths involving heroin and the number of drug overdose deaths involving synthetic opioids other than methadone.
Selection of specific states and other jurisdictions to report
Provisional counts are presented by the jurisdiction in which the death occurred (i.e., the reporting jurisdiction). Data quality and timeliness for drug overdose deaths vary by reporting jurisdiction. Provisional counts are presented for reporting jurisdictions based on measures of data quality: the percentage of records where the manner of death is listed as “pending investigation,” the overall completeness of the data, and the percentage of drug overdose death records with specific drugs or drug classes recorded. These criteria are defined below.
Percentage of records pending investigation
Drug overdose deaths often require lengthy investigations, and death certificates may be initially filed with a manner of death “pending investigation” and/or with a preliminary or unknown cause of death. When the percentage of records reported as “pending investigation” is high for a given jurisdiction, the number of drug overdose deaths is likely to be underestimated. For jurisdictions reporting fewer than 1% of records as “pending investigation”, the provisional number of drug overdose deaths occurring in the fourth quarter of 2015 was approximately 5% lower than the final count of drug overdose deaths occurring in that same time period. For jurisdictions reporting greater than 1% of records as “pending investigation” the provisional counts of drug overdose deaths may underestimate the final count of drug overdose deaths by as much as 30%. Thus, jurisdictions are included in Table 2 if 1% or fewer of their records in NVSS are reported as “pending investigation,” following a 6-month lag for the 12-month ending periods included in the dashboard. Values for records pending investigation are updated with each monthly release and reflect the most current data available.
Percent completeness
NCHS receives monthly counts of the estimated number of deaths from each jurisdictional vital registration offices (referred to as “control counts”). This number represents the best estimate of how many
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundInfluenza and respiratory syncytial virus (RSV) associated mortality has not been well-established in tropical Africa.MethodsWe used the negative binomial regression method and the rate-difference method (i.e. deaths during low and high influenza/RSV activity months), to estimate excess mortality attributable to influenza and RSV using verbal autopsy data collected through a health and demographic surveillance system in Western Kenya, 2007–2013. Excess mortality rates were calculated for a) all-cause mortality, b) respiratory deaths (including pneumonia), c) HIV-related deaths, and d) pulmonary tuberculosis (TB) related deaths.ResultsUsing the negative binomial regression method, the mean annual all-cause excess mortality rate associated with influenza and RSV was 14.1 (95% confidence interval [CI] 0.0–93.3) and 17.1 (95% CI 0.0–111.5) per 100,000 person-years (PY) respectively; and 10.5 (95% CI 0.0–28.5) and 7.3 (95% CI 0.0–27.3) per 100,000 PY for respiratory deaths, respectively. Highest mortality rates associated with influenza were among ≥50 years, particularly among persons with TB (41.6[95% CI 0.0–122.7]); and with RSV were among
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Objective: Retrospective analysis of routinely collected data using verbal and social autopsy tools to identify the medical causes of death and contribution of non-biological factors towards infant mortality Setting: The study site was Health and Demographic Surveillance System (HDSS), Ballabgarh, North India Participants: All infant deaths during year 2008 to 2012 were included for verbal autopsy whereas infant deaths from July 2012 to December 2012 were included for social autopsy. Outcome measures: Cause of death ascertained by validated verbal autopsy tool and level of delay based on three delay model using INDEPTH social autopsy tool were the main outcome measures. Results: Infant mortality rate during study period was 46.5/100 live births. Neonatal deaths contributed to 54.3% of infant deaths and 39% occurred on first day of life. Birth asphyxia (31.5%) followed by Low Birth Weight (LBW)/prematurity (26.5%) were the most common causes of neonatal death. While infective cause (57.8) was the most common cause of post-neonatal death. Care-seeking was delayed among 50% of neonatal deaths and 41.2% of post-neonatal deaths. Delay at level 1 was most common, observed in 32.4% of neonatal deaths and 29.4% of post-neonatal deaths. Deaths due to LBW/prematurity were mostly followed by delay at level 1. Conclusion: High proportion of preventable infant mortality still exists in an area which is under continuous health and demographic surveillance. There is need to enhance home based preventive care to enable the mother to identify and respond to danger signs. Verbal autopsy and social autopsy could be routinely done to guide policy interventions aimed at reduction of infant mortality.
We’d like your feedback on how you use these UKHSA surveillance data.
Take a short survey to tell us what works, what doesn’t, and how we can make it better for you.
https://snapsurvey.phe.org.uk/snapwebhost/s.asp?k=174591968925"> Take the survey now
Please note: The November edition of the ‘30 day all-cause mortality following MRSA, MSSA and Gram-negative bacteraemia and C. difficile infections: 2022 to 2023’ report is the final edition. The report has now been integrated into the annual epidemiological commentary in order to provide a more comprehensive overview of infection trends and outcomes in one report.
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Statistics that all producers of official statistics should adhere to.
These reports were prepared using mandatory surveillance data on:
These were reported to the UK Health Security Agency (UKHSA), previously Public Health England.
Mortality information was obtained by linking the mandatory surveillance data to NHS demographic records.
The number of infections, deaths and case mortality rate is presented nationally by year and further by NHS region, age, and gender by year.
The Office for National Statistics (ONS) has previously published data on deaths involving MRSA and C. difficile. The ONS data is not comparable to the data published here by UKHSA due to differences in the geography, time period, and source of death information used.
Previous reports were published by https://webarchive.nationalarchives.gov.uk/ukgwa/20210930143903/https://www.gov.uk/government/statistics/mrsa-mssa-and-e-coli-bacteraemia-and-c-difficile-infection-30-day-all-cause-fatality" class="govuk-link">Public Health England.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Under-five years and age-stratified all-cause and HIV cause-specific mortality rates per 1,000 live births by time periods, Kenya Child Health and Mortality Prevention Surveillance (CHAMPS) program, February 2018-March 2022.
The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report does not assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. Since 2021, reports run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 11 July 2024 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.