100+ datasets found
  1. Mobile App Usage Pattern Analysis by Category

    • kaggle.com
    zip
    Updated May 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Preksha Dewoolkar (2025). Mobile App Usage Pattern Analysis by Category [Dataset]. https://www.kaggle.com/datasets/prekshad2166/app-usage-by-category
    Explore at:
    zip(40712 bytes)Available download formats
    Dataset updated
    May 17, 2025
    Authors
    Preksha Dewoolkar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides comprehensive insights into mobile app usage patterns across different categories, including education, social media, productivity, entertainment, health, news, and shopping applications. It contains screen time data for 500 users with demographic information such as age and gender, making it valuable for analyzing digital behavior patterns and productivity correlations.

  2. Smartphone Usage and Behavioral Dataset

    • kaggle.com
    zip
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhadra Mohit (2024). Smartphone Usage and Behavioral Dataset [Dataset]. https://www.kaggle.com/datasets/bhadramohit/smartphone-usage-and-behavioral-dataset/suggestions?status=pending&yourSuggestions=true
    Explore at:
    zip(17107 bytes)Available download formats
    Dataset updated
    Oct 23, 2024
    Authors
    Bhadra Mohit
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    Context

    This dataset provides insights into the daily mobile usage patterns of 1,000 users, covering aspects such as screen time, app usage, and user engagement across different app categories.

    It includes a diverse range of users based on age, gender, and location.

    The data focuses on total app usage, time spent on social media, productivity, and gaming apps, along with overall screen time.

    This information is valuable for understanding behavioral trends and app usage preferences, making it useful for app developers, marketers, and UX researchers.

    This dataset is useful for analyzing mobile engagement, app usage habits, and the impact of demographic factors on mobile behavior. It can help identify trends for marketing, app development, and user experience optimization.

    Outcome

    This dataset enables a deeper understanding of mobile user behavior and app engagement across different demographics.

    Key outcomes include insights into app usage preferences, daily screen time habits, and the impact of age, gender, and location on mobile behavior.

    This analysis can help identify patterns for improving user experience, tailoring marketing strategies, and optimizing app development for different user segments.

  3. H

    Worldwide Mobile App User Behavior Dataset

    • dataverse.harvard.edu
    • kaggle.com
    Updated Sep 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soo Ling Lim (2014). Worldwide Mobile App User Behavior Dataset [Dataset]. http://doi.org/10.7910/DVN/27459
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 28, 2014
    Dataset provided by
    Harvard Dataverse
    Authors
    Soo Ling Lim
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2012
    Area covered
    Worldwide
    Description

    We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.

  4. TikTok: distribution of global audiences 2025, by age and gender

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, TikTok: distribution of global audiences 2025, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    As of February 2025, it was found that around 14.1 percent of TikTok's global audience were women between the ages of 18 and 24 years, while male users of the same age formed approximately 16.6 percent of the platform's audience. The online audience of the popular social video platform was further composed of 14.6 percent of female users aged between 25 and 34 years, and 20.7 percent of male users in the same age group.

  5. Screen time And App usage survey

    • kaggle.com
    zip
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mythri Muthyala (2024). Screen time And App usage survey [Dataset]. https://www.kaggle.com/datasets/mythrimuthyala/screen-time-and-app-usage-survey/code
    Explore at:
    zip(36810 bytes)Available download formats
    Dataset updated
    Oct 25, 2024
    Authors
    Mythri Muthyala
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    SCREEN TIME AND APP USAGE SURVEY

    A Screen Time and App Usage Survey dataset typically includes information on how users interact with their mobile devices, particularly focusing on the amount of time spent on different activities or applications. Key elements captured in such datasets include:

    **Screen Time Duration: **The total time a user spends using their device, often broken down by daily, weekly, or monthly intervals.
    **App Usage Statistics: **Data on specific apps used, including the duration and frequency of use.
    **User Demographics: **Information such as age, gender, occupation, and device type, helping to analyze trends in different population segments.
    **Time of Day:** The periods during which users are most active on their devices, revealing peak usage hours.
    Categories of Apps: Classification of apps (e.g., social media, productivity, entertainment) to understand how different app types contribute to total screen time.
    

    This dataset helps in understanding behavioral patterns, dependencies, and potential impacts of excessive screen time on health and productivity.

  6. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  7. Instagram: distribution of global audiences 2024, by age group

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age group [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.

                  Instagram users
    
                  With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
    
                  Instagram features
    
                  One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
                  As of the second quarter of 2021, Snapchat had 293 million daily active users.
    
  8. d

    Customer Attributes Dataset - Demographics, Devices & Locations APAC Data...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI Keyboard, Customer Attributes Dataset - Demographics, Devices & Locations APAC Data (1st Party Data w/90M+ records) [Dataset]. https://datarade.ai/data-products/bobble-ai-demographic-data-apac-age-gender-1st-party-data-w-52m-records-bobble-ai
    Explore at:
    .json, .csv, .xls, .parquetAvailable download formats
    Dataset authored and provided by
    AI Keyboard
    Area covered
    India, Indonesia, United Arab Emirates, Nepal, United States of America, Pakistan, Netherlands, Saudi Arabia, Philippines, Germany
    Description

    The User Profile Data is a structured, anonymized dataset designed to help organizations understand who their users are, what devices they use, and where they are located. Each record provides privacy-compliant linkages between user IDs, demographic profiles, device intelligence, and geolocation data, offering deep context for analytics, segmentation, and personalization.

    Built for privacy-safe analytics, the dataset uses hashed identifiers like phone number and email and standardized formats, making it easy to integrate into big-data platforms, AI pipelines, and machine learning models for advanced analytics.

    Demographic insights include gender, age, and age group, essential for audience profiling, marketing optimization, and consumer intelligence. All gender data is user-declared and AI-verified through image-based avatar validation, ensuring data accuracy and authenticity.

    The dataset’s Device Intelligence Layer includes rich technical attributes such as device brand, model, OS version, user agent, RAM, language, and timezone, enabling technical segmentation, performance analytics, and targeted ad delivery across diverse device ecosystems.

    On the location and POI front, the dataset combines GPS-based and IP-based coordinates—including country, region, city, latitude, longitude —to provide high-precision geospatial insights. This enables mobility pattern analysis, market expansion planning, and POI clustering for advanced location intelligence.

    Each user record contains onboarding and lifecycle fields like unique IDs, and profile update timestamps, allowing accurate tracking of user acquisition trends, data freshness, and activity duration.

    🔍 Key Features • 1st-party, consent-based demographic & device data • AI-verified gender insights via avatar recognition • OS-level app data with 120+ daily sessions per user • Global coverage across APAC and emerging markets • GPS + IP-based geolocation & POI intelligence • Privacy-compliant, hashed identifiers for safe integration

    🚀 Use Cases • Audience segmentation & lookalike modeling • Ad-tech and mar-tech optimization • Geospatial & POI analytics • Fraud detection & risk scoring • Personalization & recommendation engines • App performance & device compatibility insights

    🏢 Industries Served Ad-Tech • Mar-Tech • FinTech • Telecom • Retail Analytics • Consumer Intelligence • AI & ML Platforms

  9. App Users Segmentation: Case Study

    • kaggle.com
    zip
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhanupratap Biswas (2023). App Users Segmentation: Case Study [Dataset]. https://www.kaggle.com/datasets/bhanupratapbiswas/app-users-segmentation-case-study
    Explore at:
    zip(11584 bytes)Available download formats
    Dataset updated
    Jun 12, 2023
    Authors
    Bhanupratap Biswas
    Description

    Here's a step-by-step guide on how to approach user segmentation for FitTrackr:

    Define your segmentation goals: Start by determining what you want to achieve with user segmentation. For example, you might want to identify the most engaged users, understand the demographics of your user base, or target specific user groups with personalized promotions.

    Gather data: Collect relevant data about your app users. This can include demographic information (age, gender, location), app usage data (frequency of app usage, time spent on different features), user behavior (types of workouts, goals set, achievements unlocked), and any other relevant data points available to you.

    Identify relevant segmentation variables: Based on the goals you defined, identify the key variables that will help you segment your user base effectively. For FitTrackr, potential variables could include age, gender, fitness goals (e.g., weight loss, muscle gain), workout preferences (e.g., cardio, strength training), and user engagement level.

    Segment the user base: Use clustering techniques or segmentation algorithms to divide your user base into distinct segments based on the identified variables. You can employ methods such as k-means clustering, hierarchical clustering, or even machine learning algorithms like decision trees or random forests.

    Analyze and profile each segment: Once the segmentation is done, analyze each segment to understand their characteristics, preferences, and needs. Create detailed user profiles for each segment, including demographic information, app usage patterns, fitness goals, and any other relevant attributes. This will help you tailor your marketing messages and app features to each segment's specific requirements.

    Develop targeted strategies: Based on the insights gained from user profiles, develop targeted marketing strategies and app features for each segment. For example, if you have a segment of users who primarily focus on weight loss, you might create personalized workout plans or send them motivational content related to weight management.

    Implement and evaluate: Implement the targeted strategies and monitor their effectiveness. Continuously evaluate and refine your segmentation approach based on user feedback, engagement metrics, and the achievement of your goals.

  10. d

    Basic Demographics Age and Gender - Seattle Neighborhoods

    • catalog.data.gov
    • data.seattle.gov
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Basic Demographics Age and Gender - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/basic-demographics-age-and-gender-seattle-neighborhoods
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima

  11. dataset for dating app use and TNSB.sav

    • figshare.com
    bin
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yao Yao (2024). dataset for dating app use and TNSB.sav [Dataset]. http://doi.org/10.6084/m9.figshare.25001390.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 16, 2024
    Dataset provided by
    figshare
    Authors
    Yao Yao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This research conducted an online survey to investigate the relationship between dating app use and hookup intention. It measured dating app use, perceived descriptive norms, injunctive norms, fear of negative evaluation, hookup intention, and demographic information including age, gender, sexual orientation, and relationship status.

  12. Selected social outcomes of using the Internet and social networking...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Jun 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Selected social outcomes of using the Internet and social networking websites or apps by gender and age group [Dataset]. http://doi.org/10.25318/2210014201-eng
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Percentage of Canadians who have experienced selected personal effects in their life because of the Internet and the use of social networking websites or apps, during the past 12 months.

  13. Predicting age groups of Twitter users based on language and metadata...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio A. Morgan-Lopez; Annice E. Kim; Robert F. Chew; Paul Ruddle (2023). Predicting age groups of Twitter users based on language and metadata features [Dataset]. http://doi.org/10.1371/journal.pone.0183537
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Antonio A. Morgan-Lopez; Annice E. Kim; Robert F. Chew; Paul Ruddle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles’ metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen’s d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as “school” for youth and “college” for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research.

  14. f

    Reachout Cohort Study Trial data

    • open.flinders.edu.au
    • researchdata.edu.au
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Musiat; Niranjan Bidargaddi; Megan Winsall (2023). Reachout Cohort Study Trial data [Dataset]. http://doi.org/10.4226/86/592e34b42cd8a
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Flinders University
    Authors
    Peter Musiat; Niranjan Bidargaddi; Megan Winsall
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset includes data from the Young and Well Towns (YAWT) Collaborative Research Centre (CRC) project. An uncontrolled trial was conducted that investigated the use and effect of mobile apps for mental health and wellbeing in young people. The study targeted adolescents and young adults (age 16 - 25) from Australia. Participants were asked to complete a profiling survey that assessed demographic characteristics, mental health, personality, and app use. Furthermore, they were asked to use and link a range of freely and commercially available health, fitness, or wellbeing apps. A range of app-specific metrics were assessed throughout the study period. Individuals were asked to use the mobile apps for a period of at least two weeks. Participants were continuously monitored over the study period with regard to subjective mood, sleep, rest and energy, through regular web-based self-report assessments.Date coverage: 2016-06-01 - 2017-01-31

  15. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  16. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  17. User behaviour

    • kaggle.com
    zip
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MohamedAjmal H (2024). User behaviour [Dataset]. https://www.kaggle.com/datasets/mohamedajmalh/user-behaviour
    Explore at:
    zip(659155 bytes)Available download formats
    Dataset updated
    Oct 25, 2024
    Authors
    MohamedAjmal H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Expanded User Behavior Dataset Overview The Expanded User Behavior Dataset contains information about mobile device users, their daily usage habits, and demographic data. This dataset can be used to analyze patterns of mobile usage, battery consumption, and user engagement. It is structured to include various characteristics such as device model, operating system, screen-on time, app usage time, and user demographics like age and gender. Dataset Structure The dataset consists of 1,000 rows and 11 columns. Each row represents an individual user’s data, capturing key information about their device and usage behavior. File Name expanded_user_behavior_dataset.csv Number of Rows 1,000 Number of Columns 11 Column Descriptions 1. User ID (Integer): A unique identifier for each user. 2. Device Model (Categorical): The model of the user's mobile device. Examples: "Google Pixel 5", "OnePlus 9". 3. Operating System (Categorical): The operating system of the mobile device, either "Android" or "iOS". 4. App Usage Time (min/day) (Integer): The average daily time spent using apps on the device, in minutes. 5. Screen On Time (hours/day) (Float): The average number of hours the screen is on per day. 6. Battery Drain (mAh/day) (Integer): The average amount of battery consumed per day, measured in milliampere-hour (mAh). 7. Number of Apps Installed (Integer): The number of applications installed on the user's device. 8. Data Usage (MB/day) (Integer): The average daily mobile data usage by the user, in megabytes (MB). 9. Age (Integer): The user's age in years. 10. Gender (Categorical): The gender of the user, either "Male" or "Female". 11. User Behavior Class (Integer): A numerical class categorizing the user based on their behavior patterns. The specific meanings of the class values are not provided. Usage This dataset can be used for:  User Segmentation: Identify different types of users based on their app usage, battery consumption, and demographics.  Behavior Analysis: Study mobile usage patterns across different age groups, genders, device models, and operating systems.  Machine Learning: Train clustering algorithms, classification models, or regression models to predict user behavior classes or derive insights from user characteristics.  Data-Driven Marketing: Understand key demographics that prefer certain device models or consume more data and battery

  18. G

    Adverse effects of using the Internet and social networking websites or apps...

    • open.canada.ca
    • www150.statcan.gc.ca
    csv, html, xml
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Adverse effects of using the Internet and social networking websites or apps by gender and age group, inactive [Dataset]. https://open.canada.ca/data/en/dataset/80c88ac9-8ea1-4ff7-856e-560f7683d660
    Explore at:
    html, xml, csvAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Percentage of Internet users who have experienced selected personal effects in their life because of the Internet and the use of social networking websites or apps, during the past 12 months.

  19. u

    S3 Dataset

    • portalinvestigacion.um.es
    • figshare.com
    Updated 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez; López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez (2021). S3 Dataset [Dataset]. https://portalinvestigacion.um.es/documentos/668fc48db9e7c03b01be0de8?lang=de
    Explore at:
    Dataset updated
    2021
    Authors
    López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez; López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez
    Description

    The S3 dataset contains the behavior (sensors, statistics of applications, and voice) of 21 volunteers interacting with their smartphones for more than 60 days. The type of users is diverse, males and females in the age range from 18 until 70 have been considered in the dataset generation. The wide range of age is a key aspect, due to the impact of age in terms of smartphone usage. To generate the dataset the volunteers installed a prototype of the smartphone application in on their Android mobile phones.
    All attributes of the different kinds of data are writed in a vector. The dataset contains the fellow vectors:
    Sensors:
    This type of vector contains data belonging to smartphone sensors (accelerometer and gyroscope) that has been acquired in a given windows of time. Each vector is obtained every 20 seconds, and the monitored features are:- Average of accelerometer and gyroscope values.- Maximum and minimum of accelerometer and gyroscope values.- Variance of accelerometer and gyroscope values.- Peak-to-peak (max-min) of X, Y, Z coordinates.- Magnitude for gyroscope and accelerometer.

    Statistics:
    These vectors contain data about the different applications used by the user recently. Each vector of statistics is calculated every 60 seconds and contains : - Foreground application counters (number of different and total apps) for the last minute and the last day.- Most common app ID and the number of usages in the last minute and the last day. - ID of the currently active app. - ID of the last active app prior to the current one.- ID of the application most frequently utilized prior to the current application. - Bytes transmitted and received through the network interfaces.

    Voice:
    This kind of vector is generated when the microphone is active in a call o voice note. The speaker vector is an embedding, extracted from the audio, and it contains information about the user's identity. This vector, is usually named "x-vector" in the Speaker Recognition field, and it is calculated following the steps detailed in "egs/sitw/v2" for the Kaldi library, with the models available for the extraction of the embedding.


    A summary of the details of the collected database.
    - Users: 21 - Sensors vectors: 417.128 - Statistics app's usage vectors: 151.034 - Speaker vectors: 2.720 - Call recordings: 629 - Voice messages: 2.091

  20. Apprenticeships - Achievement Rates Subjects - Volumes and Rates by STEM,...

    • explore-education-statistics.service.gov.uk
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Education (2025). Apprenticeships - Achievement Rates Subjects - Volumes and Rates by STEM, SSA T1, Level, Age, Ethnicity, Sex, LLDD [Dataset]. https://explore-education-statistics.service.gov.uk/data-catalogue/data-set/c38ad89d-7fe8-47aa-844d-d08778862489
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    Department for Educationhttps://gov.uk/dfe
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Apprenticeship national achievement rate tables. - Explore Education Statistics data set Achievement Rates Subjects - Volumes and Rates by STEM, SSA T1, Level, Age, Ethnicity, Sex, LLDD from Apprenticeships

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Preksha Dewoolkar (2025). Mobile App Usage Pattern Analysis by Category [Dataset]. https://www.kaggle.com/datasets/prekshad2166/app-usage-by-category
Organization logo

Mobile App Usage Pattern Analysis by Category

Analyze user screen time across app categories with demographic correlations and

Explore at:
zip(40712 bytes)Available download formats
Dataset updated
May 17, 2025
Authors
Preksha Dewoolkar
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset provides comprehensive insights into mobile app usage patterns across different categories, including education, social media, productivity, entertainment, health, news, and shopping applications. It contains screen time data for 500 users with demographic information such as age and gender, making it valuable for analyzing digital behavior patterns and productivity correlations.

Search
Clear search
Close search
Google apps
Main menu