37 datasets found
  1. BITCOIN Historical Datasets 2018-2025 Binance API

    • kaggle.com
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Novandra Anugrah (2025). BITCOIN Historical Datasets 2018-2025 Binance API [Dataset]. https://www.kaggle.com/datasets/novandraanugrah/bitcoin-historical-datasets-2018-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Novandra Anugrah
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Bitcoin Historical Data (2018-2024) - 15M, 1H, 4H, and 1D Timeframes

    Dataset Overview

    This dataset contains historical price data for Bitcoin (BTC/USDT) from January 1, 2018, to the present. The data is sourced using the Binance API, providing granular candlestick data in four timeframes: - 15-minute (15M) - 1-hour (1H) - 4-hour (4H) - 1-day (1D)

    This dataset includes the following fields for each timeframe: - Open time: The timestamp for when the interval began. - Open: The price of Bitcoin at the beginning of the interval. - High: The highest price during the interval. - Low: The lowest price during the interval. - Close: The price of Bitcoin at the end of the interval. - Volume: The trading volume during the interval. - Close time: The timestamp for when the interval closed. - Quote asset volume: The total quote asset volume traded during the interval. - Number of trades: The number of trades executed within the interval. - Taker buy base asset volume: The volume of the base asset bought by takers. - Taker buy quote asset volume: The volume of the quote asset spent by takers. - Ignore: A placeholder column from Binance API, not used in analysis.

    Data Sources

    Binance API: Used for retrieving 15-minute, 1-hour, 4-hour, and 1-day candlestick data from 2018 to the present.

    File Contents

    1. btc_15m_data_2018_to_present.csv: 15-minute interval data from 2018 to the present.
    2. btc_1h_data_2018_to_present.csv: 1-hour interval data from 2018 to the present.
    3. btc_4h_data_2018_to_present.csv: 4-hour interval data from 2018 to the present.
    4. btc_1d_data_2018_to_present.csv: 1-day interval data from 2018 to the present.

    Automated Daily Updates

    This dataset is automatically updated every day using a custom Python program.
    The source code for the update script is available on GitHub:
    🔗 Bitcoin Dataset Kaggle Auto Updater

    Licensing

    This dataset is provided under the CC0 Public Domain Dedication. It is free to use for any purpose, with no restrictions on usage or redistribution.

  2. Integrated Cryptocurrency Historical Data for a Predictive Data-Driven...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

  3. d

    Crypto Market Data CSV Export: Trades, Quotes & Order Book Access via S3

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI, Crypto Market Data CSV Export: Trades, Quotes & Order Book Access via S3 [Dataset]. https://datarade.ai/data-products/coinapi-comprehensive-crypto-market-data-in-flat-files-tra-coinapi
    Explore at:
    .json, .csvAvailable download formats
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Solomon Islands, Kyrgyzstan, Liechtenstein, Norfolk Island, Montserrat, Qatar, Northern Mariana Islands, Latvia, Iraq, Tanzania
    Description

    When you need to analyze crypto market history, batch processing often beats streaming APIs. That's why we built the Flat Files S3 API - giving analysts and researchers direct access to structured historical cryptocurrency data without the integration complexity of traditional APIs.

    Pull comprehensive historical data across 800+ cryptocurrencies and their trading pairs, delivered in clean, ready-to-use CSV formats that drop straight into your analysis tools. Whether you're building backtest environments, training machine learning models, or running complex market studies, our flat file approach gives you the flexibility to work with massive datasets efficiently.

    Why work with us?

    Market Coverage & Data Types: - Comprehensive historical data since 2010 (for chosen assets) - Comprehensive order book snapshots and updates - Trade-by-trade data

    Technical Excellence: - 99,9% uptime guarantee - Standardized data format across exchanges - Flexible Integration - Detailed documentation - Scalable Architecture

    CoinAPI serves hundreds of institutions worldwide, from trading firms and hedge funds to research organizations and technology providers. Our S3 delivery method easily integrates with your existing workflows, offering familiar access patterns, reliable downloads, and straightforward automation for your data team. Our commitment to data quality and technical excellence, combined with accessible delivery options, makes us the trusted choice for institutions that demand both comprehensive historical data and real-time market intelligence

  4. Bitcoin Historical Data

    • kaggle.com
    Updated Mar 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zielak (2025). Bitcoin Historical Data [Dataset]. https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data/versions/169
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Zielak
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    Bitcoin is the longest running and most well known cryptocurrency, first released as open source in 2009 by the anonymous Satoshi Nakamoto. Bitcoin serves as a decentralized medium of digital exchange, with transactions verified and recorded in a public distributed ledger (the blockchain) without the need for a trusted record keeping authority or central intermediary. Transaction blocks contain a SHA-256 cryptographic hash of previous transaction blocks, and are thus "chained" together, serving as an immutable record of all transactions that have ever occurred. As with any currency/commodity on the market, bitcoin trading and financial instruments soon followed public adoption of bitcoin and continue to grow. Included here is historical bitcoin market data at 1-min intervals for select bitcoin exchanges where trading takes place. Happy (data) mining!

    Content

    (See https://github.com/mczielinski/kaggle-bitcoin/ for automation/scraping script)

    btcusd_1-min_data.csv
    

    CSV files for select bitcoin exchanges for the time period of Jan 2012 to Present (Measured by UTC day), with minute to minute updates of OHLC (Open, High, Low, Close) and Volume in BTC.

    If a timestamp is missing, or if there are jumps, this may be because the exchange (or its API) was down, the exchange (or its API) did not exist, or some other unforeseen technical error in data reporting or gathering. All effort has been made to deduplicate entries and verify the contents are correct and complete to the best of my ability, but obviously trust at your own risk.

    Acknowledgements and Inspiration

    Bitcoin charts for the data, originally. Now thank you to the Bitstamp API directly. The various exchange APIs, for making it difficult or unintuitive enough to get OHLC and volume data at 1-min intervals that I set out on this data scraping project. Satoshi Nakamoto and the novel core concept of the blockchain, as well as its first execution via the bitcoin protocol. I'd also like to thank viewers like you! Can't wait to see what code or insights you all have to share.

  5. d

    Crypto Quotes: Real-Time & Historical CEX/DEX Data | Crypto Data | Bid Price...

    • datarade.ai
    .json, .csv
    Updated Oct 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2018). Crypto Quotes: Real-Time & Historical CEX/DEX Data | Crypto Data | Bid Price | Ask Price [Dataset]. https://datarade.ai/data-products/coinapi-crypto-quotes-data-real-time-historical-quotes-coinapi
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Oct 10, 2018
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Oman, France, Papua New Guinea, Croatia, Marshall Islands, Vietnam, Vanuatu, El Salvador, Bahamas, Saudi Arabia
    Description

    CoinAPI's Level 1 Crypto Quote Data delivers essential digital asset market intelligence, capturing real-time bid/ask prices and volumes across 350+ exchanges including both CEX and DEX platforms.

    This comprehensive data stream provides precise market snapshots with microsecond-accurate timestamps, perfect for applications demanding rapid price discovery and effective market monitoring.

    Designed for minimal latency and maximum update frequency, our feed powers everything from sophisticated trading algorithms and responsive price widgets to in-depth market analysis tools.

    You can access data through FIX or WebSocket for instant streaming or REST API for historical analysis and backtesting.

    Why work with us?

    Market Coverage & Data Types: - Real-time and historical data since 2010 (for chosen assets) - Full order book depth (L2/L3) - Tick-by-tick data - OHLCV across multiple timeframes - Market indexes (VWAP, PRIMKT) - Exchange rates with fiat pairs - Spot, futures, options, and perpetual contracts - Coverage of 90%+ global trading volume - Full Cryptocurrency Investor Data

    Technical Excellence: - 99,9% uptime guarantee - Multiple delivery methods: REST, WebSocket, FIX, S3 - Standardized data format across exchanges - Ultra-low latency data streaming - Detailed documentation - Custom integration assistance

    CoinAPI is trusted by financial institutions, trading firms, hedge funds, researchers, and technology developers worldwide. We provide reliable cryptocurrency market data through our commitment to quality and technical performance.

  6. c

    Historical Crypto Data: Cryptocurrency Archive for Research, Backtesting and...

    • dataproducts.coinapi.io
    Updated Oct 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2024). Historical Crypto Data: Cryptocurrency Archive for Research, Backtesting and Market Analysis [Dataset]. https://dataproducts.coinapi.io/products/coinapi-historical-real-time-crypto-data-digital-asset-d-coinapi
    Explore at:
    Dataset updated
    Oct 20, 2024
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Kyrgyzstan, Saint Vincent and the Grenadines, Saint Helena, Maldives, Solomon Islands, Yemen, United Arab Emirates, Montserrat, Indonesia, Lesotho
    Description

    CoinAPI delivers institutional-grade Historical Crypto Data for backtesting and analysis. Our cryptocurrency archive powers research across Bitcoin, Ethereum and all markets through one reliable API—transforming strategies with precision data that matters.

  7. c

    Complete Crypto Market Data with Price History & Volume | Analytics &...

    • dataproducts.coinapi.io
    Updated Oct 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2024). Complete Crypto Market Data with Price History & Volume | Analytics & Trading Insights | Crypto Data Export [Dataset]. https://dataproducts.coinapi.io/products/coinapi-crypto-market-data-crypto-analytics-historical-a-coinapi
    Explore at:
    Dataset updated
    Oct 20, 2024
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Heard Island and McDonald Islands, French Polynesia, Thailand, Liberia, Northern Mariana Islands, Singapore, Aruba, South Korea, Latvia, Saint Pierre and Miquelon
    Description

    CoinAPI delivers complete crypto market data with full price history and trading volumes. Access in-depth analytics and historical insights through simple export options via flat files and S3 API. Our extensive trading data integrates easily with your analytics tools for better market understanding.

  8. d

    Crypto Futures & Derivatives | Real-Time & Historical Crypto Futures Data...

    • datarade.ai
    .json, .csv
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2025). Crypto Futures & Derivatives | Real-Time & Historical Crypto Futures Data from Global Exchanges | Rest API, WebSocket, FIX [Dataset]. https://datarade.ai/data-categories/crypto-futures-data/apis
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    CoinAPI
    Area covered
    Guadeloupe, Benin, India, Estonia, French Polynesia, Réunion, Hong Kong, Namibia, Trinidad and Tobago, New Zealand
    Description

    CoinAPI gives you comprehensive crypto futures data and derivatives data from exchanges around the world. We track futures contracts, perpetual swaps, and options markets, delivering both real-time updates and historical information for complete market analysis.

    Our system captures all the key metrics derivative traders care about - from open interest and funding rates to trading volumes and order book depth. This detailed market intelligence helps you spot opportunities and manage risk more effectively.

    Getting connected is straightforward - choose from REST API for flexible queries, WebSocket for instant market updates, or FIX protocol for institutional-grade integration. We support both real-time streaming for active trading and historical data access for backtesting and research.

    Why work with us?

    Market Coverage & Data Types: - Real-time and historical data since 2010 (for chosen assets) - Full order book depth (L2/L3) - Tick-by-tick data - OHLCV across multiple timeframes - Market indexes (VWAP, PRIMKT) - Exchange rates with fiat pairs - Spot, futures, options, and perpetual contracts (Crypto Derivatives Data) - Coverage of 90%+ global trading volume

    Technical Excellence: - 99,9% uptime guarantee - Multiple delivery methods: REST, WebSocket, FIX, S3 - Standardized data format across exchanges - Ultra-low latency data streaming - Detailed documentation - Custom integration assistance

    Whether you're building automated trading systems, conducting market research, or managing investment risk, our reliable data provides the solid foundation you need. Professional traders trust our information because it delivers the accuracy and consistency required for serious derivatives trading.

  9. Bitcoin Futures tick data (BTC) - CME Globex MDP 3.0

    • databento.com
    csv, dbn, json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Databento, Bitcoin Futures tick data (BTC) - CME Globex MDP 3.0 [Dataset]. https://databento.com/catalog/cme/GLBX.MDP3/futures/BTC
    Explore at:
    json, csv, dbnAvailable download formats
    Dataset provided by
    Databento Inc.
    Authors
    Databento
    Time period covered
    Jun 6, 2010 - Present
    Description

    Browse Bitcoin Futures (BTC) market data. Get instant pricing estimates and make batch downloads of binary, CSV, and JSON flat files.

    The CME Group Market Data Platform (MDP) 3.0 disseminates event-based bid, ask, trade, and statistical data for CME Group markets and also provides recovery and support services for market data processing. MDP 3.0 includes the introduction of Simple Binary Encoding (SBE) and Event Driven Messaging to the CME Group Market Data Platform. Simple Binary Encoding (SBE) is based on simple primitive encoding, and is optimized for low bandwidth, low latency, and direct data access. Since March 2017, MDP 3.0 has changed from providing aggregated depth at every price level (like CME's legacy FAST feed) to providing full granularity of every order event for every instrument's direct book. MDP 3.0 is the sole data feed for all instruments traded on CME Globex, including futures, options, spreads and combinations. Note: We classify exchange-traded spreads between futures outrights as futures, and option combinations as options.

    Origin: Directly captured at Aurora DC3 with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP

    Supported data encodings: DBN, CSV, JSON Learn more

    Supported market data schemas: MBO, MBP-1, MBP-10, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics Learn more

    Resolution: Immediate publication, nanosecond-resolution timestamps

  10. Cryptocurrency extra data - Bitcoin

    • kaggle.com
    zip
    Updated Dec 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2021). Cryptocurrency extra data - Bitcoin [Dataset]. http://doi.org/10.34740/kaggle/dsv/2957358
    Explore at:
    zip(1293027802 bytes)Available download formats
    Dataset updated
    Dec 22, 2021
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  11. d

    Meme Coin Market Data: Comprehensive Coverage of DOGE, SHIB, BONK, PEPE &...

    • datarade.ai
    .json, .csv
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2024). Meme Coin Market Data: Comprehensive Coverage of DOGE, SHIB, BONK, PEPE & other Digital Asset Data [Dataset]. https://datarade.ai/data-products/coinapi-most-accurate-meme-coin-data-doge-shib-bonk-coinapi
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Mongolia, Cayman Islands, Cambodia, Jordan, Djibouti, Serbia, Vietnam, Jamaica, Bonaire, Guyana
    Description

    DOGE started it. SHIB took it mainstream. BONK and PEPE brought in the crowds. Now what?

    Stay on top of the entire meme coin ecosystem through CoinAPI's comprehensive data feeds. We've connected to 350+ exchanges so you don't have to, bringing together every significant market into one unified API that actually works when you need it. Dig into historical patterns that shaped today's meme coin landscape. Compare volume spikes across different tokens during viral moments. Track institutional entry points that transformed joke coins into serious market movers.

    From quick price checks to in-depth research projects, our institutional-grade precision helps you navigate this volatile but opportunity-rich corner of the crypto market. With Digital Asset Data complete market coverage, you'll never miss a beat. Serious data for not-so-serious coins. That's the CoinAPI difference

    ➡️ Why choose us?

    📊 Market Coverage & Data Types: ◦ Real-time and historical data since 2010 (for chosen assets) ◦ Full order book depth (L2/L3) ◦ Trade-by-trade data ◦ OHLCV across multiple timeframes ◦ Market indexes (VWAP, PRIMKT) ◦ Exchange rates with fiat pairs ◦ Spot, futures, options, and perpetual contracts ◦ Coverage of 90%+ global trading volume ◦ Full Crypto Trade Data

    🔧 Technical Excellence: ◦ 99,9% uptime guarantee ◦ Multiple delivery methods: REST, WebSocket, FIX, S3 ◦ Standardized data format across exchanges ◦ Ultra-low latency data streaming ◦ Detailed documentation ◦ Custom integration assistance

    CoinAPI represents the gold standard in cryptocurrency data, trusted by leading financial institutions, technology providers, and market makers worldwide. By combining technology with rigorous data validation protocols, we provide the foundation upon which many financial products are being built.

  12. Cryptocurrency extra data - Stellar

    • kaggle.com
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Stellar [Dataset]. http://doi.org/10.34740/kaggle/dsv/3066647
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  13. Bitwise Bitcoin ETF stock price history (BITB)

    • databento.com
    csv, dbn, json
    Updated May 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Databento (2018). Bitwise Bitcoin ETF stock price history (BITB) [Dataset]. https://databento.com/catalog/us-equities/XNAS.ITCH/etf/BITB
    Explore at:
    dbn, csv, jsonAvailable download formats
    Dataset updated
    May 1, 2018
    Dataset provided by
    Databento Inc.
    Authors
    Databento
    Time period covered
    May 1, 2018 - Present
    Area covered
    United States
    Description

    Browse Bitwise Bitcoin ETF (BITB) market data. Get instant pricing estimates and make batch downloads of binary, CSV, and JSON flat files.

    Nasdaq TotalView-ITCH is the proprietary data feed that provides full order book depth for Nasdaq market participants.

    Origin: Directly captured at Equinix NY4 (Secaucus, NJ) with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP.

    Supported data encodings: DBN, CSV, JSON Learn more

    Supported market data schemas: MBO, MBP-1, MBP-10, BBO-1s, BBO-1m, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics, Status, Imbalance Learn more

    Resolution: Immediate publication, nanosecond-resolution timestamps

  14. c

    Crypto Market Data CSV Export: Trades, Quotes & Order Book Access via S3

    • dataproducts.coinapi.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI, Crypto Market Data CSV Export: Trades, Quotes & Order Book Access via S3 [Dataset]. https://dataproducts.coinapi.io/products/coinapi-comprehensive-crypto-market-data-in-flat-files-tra-coinapi
    Explore at:
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Grenada, Argentina, Angola, Timor-Leste, Cook Islands, San Marino, Libya, Vanuatu, Algeria, Germany
    Description

    CoinAPI's Flat Files S3 API delivers historical crypto market data through downloadable CSV files. Access trades, quotes, and order book information in a user-friendly format. Our readable data files provide everything universities and analytics companies need.

  15. Cryptocurrency extra data - Maker

    • kaggle.com
    zip
    Updated Nov 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2021). Cryptocurrency extra data - Maker [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-maker
    Explore at:
    zip(79531062 bytes)Available download formats
    Dataset updated
    Nov 15, 2021
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  16. Grayscale Bitcoin Trust (BTC) stock price history (GBTC)

    • databento.com
    csv, dbn, json
    Updated May 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Databento (2018). Grayscale Bitcoin Trust (BTC) stock price history (GBTC) [Dataset]. https://databento.com/catalog/us-equities/XNAS.ITCH/etf/GBTC
    Explore at:
    json, dbn, csvAvailable download formats
    Dataset updated
    May 1, 2018
    Dataset provided by
    Databento Inc.
    Authors
    Databento
    Time period covered
    May 1, 2018 - Present
    Area covered
    United States
    Description

    Browse Grayscale Bitcoin Trust (BTC) (GBTC) market data. Get instant pricing estimates and make batch downloads of binary, CSV, and JSON flat files.

    Nasdaq TotalView-ITCH is the proprietary data feed that provides full order book depth for Nasdaq market participants.

    Origin: Directly captured at Equinix NY4 (Secaucus, NJ) with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP.

    Supported data encodings: DBN, CSV, JSON Learn more

    Supported market data schemas: MBO, MBP-1, MBP-10, BBO-1s, BBO-1m, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics, Status, Imbalance Learn more

    Resolution: Immediate publication, nanosecond-resolution timestamps

  17. d

    Finage Real-Time & Historical Cryptocurrency Market Feed - Global...

    • datarade.ai
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finage (2021). Finage Real-Time & Historical Cryptocurrency Market Feed - Global Cryptocurrency Data [Dataset]. https://datarade.ai/data-products/real-time-historical-cryptocurrency-market-feed-finage
    Explore at:
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Finage
    Area covered
    Sweden, Albania, Korea (Democratic People's Republic of), Macao, Mayotte, South Africa, Paraguay, Switzerland, Turkey, France
    Description

    Cryptocurrencies

    Finage offers you more than 1700+ cryptocurrency data in real time.

    With Finage, you can react to the cryptocurrency data in Real-Time via WebSocket or unlimited API calls. Also, we offer you a 7-year historical data API.

    You can view the full Cryptocurrency market coverage with the link given below. https://finage.s3.eu-west-2.amazonaws.com/Finage_Crypto_Coverage.pdf

  18. d

    Crypto Options Data & Derivatives | Real-Time & Historical Cryptocurrency...

    • datarade.ai
    .json, .csv
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2025). Crypto Options Data & Derivatives | Real-Time & Historical Cryptocurrency Market Data [Dataset]. https://datarade.ai/data-categories/crypto-options-data/apis
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    CoinAPI
    Area covered
    Guinea-Bissau, Spain, Ascension and Tristan da Cunha, Iceland, Haiti, Indonesia, Turkey, Pitcairn, Barbados, Netherlands
    Description

    Cryptocurrency options markets have grown increasingly sophisticated, requiring reliable data infrastructure to support trading and analysis. Our platform gives you direct access to comprehensive crypto options data through straightforward API connections.

    We capture the complete options chain across major crypto derivatives exchanges, delivering real-time and historical cryptocurrency market data that shows exactly what's happening in these complex markets. Each options contract is tracked with precision - strikes, expiration dates, premiums, open interest, and volume metrics all accessible through our standardized data feeds.

    The data is available through multiple integration methods depending on your needs. Use our REST API for flexible queries and historical analysis, WebSocket for real-time market monitoring, or FIX protocol for institutional-grade connectivity with minimal latency.

    Why work with us?

    Market Coverage & Data Types: - Real-time and historical data since 2010 (for chosen assets) - Full order book depth (L2/L3) - Tick-by-tick data - OHLCV across multiple timeframes - Market indexes (VWAP, PRIMKT) - Exchange rates with fiat pairs - Spot, futures, options, and perpetual contracts - Coverage of 90%+ global trading volume

    Technical Excellence: - 99% uptime guarantee - Multiple delivery methods: REST, WebSocket, FIX, S3 - Standardized data format across exchanges - Ultra-low latency data streaming - Detailed documentation - Custom integration assistance

    When options traders need reliable market intelligence, they don't leave it to chance. That's why trading desks across five continents, quantitative hedge funds managing billions, and fintech innovators building tomorrow's trading platforms all rely on our data infrastructure. We've established ourselves as a dependable source in a market where accuracy isn't just preferred - it's essential. While others promise comprehensive coverage, we deliver it consistently, trade after trade, day after day.

  19. Database of influencers' tweets in cryptocurrency (2021-2023)

    • cryptodata.center
    • data.mendeley.com
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Database of influencers' tweets in cryptocurrency (2021-2023) [Dataset]. https://cryptodata.center/dataset/https-data-mendeley-com-datasets-8fbdhh72gs-5
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Authors, through Twitter API, collected this database over eight months. These data are tweets of over 50 experts regarding market analysis of 40 cryptocurrencies. These experts are known as influencers on social networks such as Twitter. The theory of Behavioral economics shows that the opinions of people, especially experts, can impact the stock market trend (here, cryptocurrencies). Existing databases often cover tweets related to one or more cryptocurrencies. Also, in these databases, no attention is paid to the user's expertise, and most of the data is extracted using hashtags. Failure to pay attention to the user's expertise causes the irrelevant volume to increase and the neutral polarity to increase considerably. This database has a main table named "Tweets1" with 11 columns and 40 tables to separate comments related to each cryptocurrency. The columns of the main table and the cryptocurrency tables are explained in the attached document. Researchers can use this dataset in various machine learning tasks, such as sentiment analysis and deep transfer learning with sentiment analysis. Also, this data can be used to check the impact of influencers' opinions on the cryptocurrency market trend. The use of this database is allowed by mentioning the source. Also, in this version, we have added the excel version of the database and Python code to extract the names of influencers and tweets. in Version(3): In the new version, three datasets related to historical prices and sentiments related to Bitcoin, Ethereum, and Binance have been added as Excel files from January 1, 2023, to June 12, 2023. Also, two datasets of 52 influential tweets in cryptocurrencies have been published, along with the score and polarity of sentiments regarding more than 300 cryptocurrencies from February 2021 to June 2023. Also, two Python codes related to the sentiment analysis algorithm of tweets with Python have been published. This algorithm combines RoBERTa pre-trained deep neural network and BiGRU deep neural network with an attention layer (see code Preprocessing_and_sentiment_analysis with python).

  20. h

    CryptoCoin

    • huggingface.co
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lin Xueyuan (2025). CryptoCoin [Dataset]. https://huggingface.co/datasets/linxy/CryptoCoin
    Explore at:
    Dataset updated
    May 11, 2025
    Authors
    Lin Xueyuan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Crypto Coin Historical Data (2018-2025)

    A dataset containing cryptocurrency historical price data across multiple timeframes. Designed to provide a standardized, easily accessible dataset for cryptocurrency research and algorithmic trading development. This dataset is automatically updated daily using the Binance API, ensuring that it remains current and relevant for users. Last updated on 2025-05-11 00:17:48.

      Usage
    

    from datasets import load_dataset dataset =… See the full description on the dataset page: https://huggingface.co/datasets/linxy/CryptoCoin.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Novandra Anugrah (2025). BITCOIN Historical Datasets 2018-2025 Binance API [Dataset]. https://www.kaggle.com/datasets/novandraanugrah/bitcoin-historical-datasets-2018-2024
Organization logo

BITCOIN Historical Datasets 2018-2025 Binance API

BTCUSDT spot crypto Binance (Daily, 4h, 1h, 15m) update to current day

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 11, 2025
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Novandra Anugrah
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Bitcoin Historical Data (2018-2024) - 15M, 1H, 4H, and 1D Timeframes

Dataset Overview

This dataset contains historical price data for Bitcoin (BTC/USDT) from January 1, 2018, to the present. The data is sourced using the Binance API, providing granular candlestick data in four timeframes: - 15-minute (15M) - 1-hour (1H) - 4-hour (4H) - 1-day (1D)

This dataset includes the following fields for each timeframe: - Open time: The timestamp for when the interval began. - Open: The price of Bitcoin at the beginning of the interval. - High: The highest price during the interval. - Low: The lowest price during the interval. - Close: The price of Bitcoin at the end of the interval. - Volume: The trading volume during the interval. - Close time: The timestamp for when the interval closed. - Quote asset volume: The total quote asset volume traded during the interval. - Number of trades: The number of trades executed within the interval. - Taker buy base asset volume: The volume of the base asset bought by takers. - Taker buy quote asset volume: The volume of the quote asset spent by takers. - Ignore: A placeholder column from Binance API, not used in analysis.

Data Sources

Binance API: Used for retrieving 15-minute, 1-hour, 4-hour, and 1-day candlestick data from 2018 to the present.

File Contents

  1. btc_15m_data_2018_to_present.csv: 15-minute interval data from 2018 to the present.
  2. btc_1h_data_2018_to_present.csv: 1-hour interval data from 2018 to the present.
  3. btc_4h_data_2018_to_present.csv: 4-hour interval data from 2018 to the present.
  4. btc_1d_data_2018_to_present.csv: 1-day interval data from 2018 to the present.

Automated Daily Updates

This dataset is automatically updated every day using a custom Python program.
The source code for the update script is available on GitHub:
🔗 Bitcoin Dataset Kaggle Auto Updater

Licensing

This dataset is provided under the CC0 Public Domain Dedication. It is free to use for any purpose, with no restrictions on usage or redistribution.

Search
Clear search
Close search
Google apps
Main menu