7 datasets found
  1. O

    BraTS 2014

    • opendatalab.com
    zip
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technical University of Munich, BraTS 2014 [Dataset]. https://opendatalab.com/OpenDataLab/BraTS_2014
    Explore at:
    zipAvailable download formats
    Dataset provided by
    Massachusetts General Hospital
    Technical University of Munich
    National Institutes of Health, USA
    University of Bern
    Description

    BRATS 2014 is a brain tumor segmentation dataset.

  2. Sensitivity and specificity of different algorithms for ten-fold...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaswati Roy; Pradipta Maji (2023). Sensitivity and specificity of different algorithms for ten-fold cross-validation. [Dataset]. http://doi.org/10.1371/journal.pone.0250964.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shaswati Roy; Pradipta Maji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sensitivity and specificity of different algorithms for ten-fold cross-validation.

  3. f

    Displacement vector for multispectral co-occurrence matrices.

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaswati Roy; Pradipta Maji (2023). Displacement vector for multispectral co-occurrence matrices. [Dataset]. http://doi.org/10.1371/journal.pone.0250964.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shaswati Roy; Pradipta Maji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Displacement vector for multispectral co-occurrence matrices.

  4. f

    Accuracy and AUC of different algorithms for ten-fold cross-validation.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaswati Roy; Pradipta Maji (2023). Accuracy and AUC of different algorithms for ten-fold cross-validation. [Dataset]. http://doi.org/10.1371/journal.pone.0250964.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shaswati Roy; Pradipta Maji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accuracy and AUC of different algorithms for ten-fold cross-validation.

  5. Textural features obtained from individual subband co-occurrence and...

    • plos.figshare.com
    xls
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaswati Roy; Pradipta Maji (2023). Textural features obtained from individual subband co-occurrence and multispectral co-occurrence for brain images with high and low grade tumors. [Dataset]. http://doi.org/10.1371/journal.pone.0250964.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shaswati Roy; Pradipta Maji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Textural features obtained from individual subband co-occurrence and multispectral co-occurrence for brain images with high and low grade tumors.

  6. f

    Textural features obtained from individual subband co-occurrence and...

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaswati Roy; Pradipta Maji (2023). Textural features obtained from individual subband co-occurrence and multispectral co-occurrence for two example images. [Dataset]. http://doi.org/10.1371/journal.pone.0250964.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shaswati Roy; Pradipta Maji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Textural features obtained from individual subband co-occurrence and multispectral co-occurrence for two example images.

  7. f

    Performance analysis of different algorithms using leave-one-out...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaswati Roy; Pradipta Maji (2023). Performance analysis of different algorithms using leave-one-out cross-validation. [Dataset]. http://doi.org/10.1371/journal.pone.0250964.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shaswati Roy; Pradipta Maji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Performance analysis of different algorithms using leave-one-out cross-validation.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technical University of Munich, BraTS 2014 [Dataset]. https://opendatalab.com/OpenDataLab/BraTS_2014

BraTS 2014

OpenDataLab/BraTS_2014

Explore at:
326 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset provided by
Massachusetts General Hospital
Technical University of Munich
National Institutes of Health, USA
University of Bern
Description

BRATS 2014 is a brain tumor segmentation dataset.

Search
Clear search
Close search
Google apps
Main menu