15 datasets found
  1. Superstore Sales Analysis

    • kaggle.com
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

  2. i

    Household Income and Expenditure 2010 - Tuvalu

    • catalog.ihsn.org
    • dev.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Division (2019). Household Income and Expenditure 2010 - Tuvalu [Dataset]. http://catalog.ihsn.org/catalog/3203
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistics Division
    Time period covered
    2010
    Area covered
    Tuvalu
    Description

    Abstract

    The main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis

    Geographic coverage

    National, including Funafuti and Outer islands

    Analysis unit

    • Household
    • individual

    Universe

    All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.

    For details please refer to Table 1.1 of the Report.

    Sampling deviation

    Only the island of Niulakita was not included in the sampling frame, considered too small.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.

    HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items

    INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer

    DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)

    Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:

    Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.

    Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.

    Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.

    Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.

    Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.

    Cleaning operations

    Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.

    All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.

    The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.

    Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.

    A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.

    Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.

    Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.

    Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with

  3. Uniform Crime Reporting (UCR) Program Data: Arrests by Age, Sex, and Race,...

    • search.datacite.org
    • openicpsr.org
    Updated 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Uniform Crime Reporting (UCR) Program Data: Arrests by Age, Sex, and Race, 1980-2016 [Dataset]. http://doi.org/10.3886/e102263v5-10021
    Explore at:
    Dataset updated
    2018
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    DataCitehttps://www.datacite.org/
    Authors
    Jacob Kaplan
    Description

    Version 5 release notes:
    Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.
    Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.
    Version 4 release notes:
    Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column names for the narcotic columns to indicate that they are only for synthetic narcotics.
    Version 3 release notes:
    Add data for 2016.Order rows by year (descending) and ORI.Version 2 release notes:
    Fix bug where Philadelphia Police Department had incorrect FIPS county code.
    The Arrests by Age, Sex, and Race data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains highly granular data on the number of people arrested for a variety of crimes (see below for a full list of included crimes). The data sets here combine data from the years 1980-2015 into a single file. These files are quite large and may take some time to load.
    All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.

    I did not make any changes to the data other than the following. When an arrest column has a value of "None/not reported", I change that value to zero. This makes the (possible incorrect) assumption that these values represent zero crimes reported. The original data does not have a value when the agency reports zero arrests other than "None/not reported." In other words, this data does not differentiate between real zeros and missing values. Some agencies also incorrectly report the following numbers of arrests which I change to NA: 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99999, 99998.

    To reduce file size and make the data more manageable, all of the data is aggregated yearly. All of the data is in agency-year units such that every row indicates an agency in a given year. Columns are crime-arrest category units. For example, If you choose the data set that includes murder, you would have rows for each agency-year and columns with the number of people arrests for murder. The ASR data breaks down arrests by age and gender (e.g. Male aged 15, Male aged 18). They also provide the number of adults or juveniles arrested by race. Because most agencies and years do not report the arrestee's ethnicity (Hispanic or not Hispanic) or juvenile outcomes (e.g. referred to adult court, referred to welfare agency), I do not include these columns.

    To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. Please note that some of the FIPS codes have leading zeros and if you open it in Excel it will automatically delete those leading zeros.

    I created 9 arrest categories myself. The categories are:
    Total Male JuvenileTotal Female JuvenileTotal Male AdultTotal Female AdultTotal MaleTotal FemaleTotal JuvenileTotal AdultTotal ArrestsAll of these categories are based on the sums of the sex-age categories (e.g. Male under 10, Female aged 22) rather than using the provided age-race categories (e.g. adult Black, juvenile Asian). As not all agencies report the race data, my method is more accurate. These categories also make up the data in the "simple" version of the data. The "simple" file only includes the above 9 columns as the arrest data (all other columns in the data are just agency identifier columns). Because this "simple" data set need fewer columns, I include all offenses.

    As the arrest data is very granular, and each category of arrest is its own column, there are dozens of columns per crime. To keep the data somewhat manageable, there are nine different files, eight which contain different crimes and the "simple" file. Each file contains the data for all years. The eight categories each have crimes belonging to a major crime category and do not overlap in crimes other than with the index offenses. Please note that the crime names provided below are not the same as the column names in the data. Due to Stata limiting column names to 32 characters maximum, I have abbreviated the crime names in the data. The files and their included crimes are:

    Index Crimes
    MurderRapeRobberyAggravated AssaultBurglaryTheftMotor Vehicle TheftArsonAlcohol CrimesDUIDrunkenness
    LiquorDrug CrimesTotal DrugTotal Drug SalesTotal Drug PossessionCannabis PossessionCannabis SalesHeroin or Cocaine PossessionHeroin or Cocaine SalesOther Drug PossessionOther Drug SalesSynthetic Narcotic PossessionSynthetic Narcotic SalesGrey Collar and Property CrimesForgeryFraudStolen PropertyFinancial CrimesEmbezzlementTotal GamblingOther GamblingBookmakingNumbers LotterySex or Family CrimesOffenses Against the Family and Children
    Other Sex Offenses
    ProstitutionRapeViolent CrimesAggravated AssaultMurderNegligent ManslaughterRobberyWeapon Offenses
    Other CrimesCurfewDisorderly ConductOther Non-trafficSuspicion
    VandalismVagrancy
    Simple
    This data set has every crime and only the arrest categories that I created (see above).
    If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.

  4. D

    Jewelry Cleaning Machine Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Jewelry Cleaning Machine Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/jewelry-cleaning-machine-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    The global market size of Jewelry Cleaning Machine is $XX million in 2018 with XX CAGR from 2014 to 2018, and it is expected to reach $XX million by the end of 2024 with a CAGR of XX% from 2019 to 2024.
    Global Jewelry Cleaning Machine Market Report 2019 - Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Jewelry Cleaning Machine industry. The key insights of the report:
    1.The report provides key statistics on the market status of the Jewelry Cleaning Machine manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry.
    2.The report provides a basic overview of the industry including its definition, applications and manufacturing technology.
    3.The report presents the company profile, product specifications, capacity, production value, and 2013-2018 market shares for key vendors.
    4.The total market is further divided by company, by country, and by application/type for the competitive landscape analysis.
    5.The report estimates 2019-2024 market development trends of Jewelry Cleaning Machine industry.
    6.Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out
    7.The report makes some important proposals for a new project of Jewelry Cleaning Machine Industry before evaluating its feasibility.
    There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.
    For competitor segment, the report includes global key players of Jewelry Cleaning Machine as well as some small players. At least 8 companies are included:
    * Arbe Machine
    * Highclean Ultrasonics
    * Blitz Manufacturing Co; Inc.
    * Master-machines
    * Skymen Cleaning Equipment
    * Waveultrasonics
    For complete companies list, please ask for sample pages.
    The information for each competitor includes:
    * Company Profile
    * Main Business Information
    * SWOT Analysis
    * Sales, Revenue, Price and Gross Margin
    * Market Share

    For product type segment, this report listed main product type of Jewelry Cleaning Machine market
    * Automatic Jewelry Cleaning Machine
    * Manual Jewelry Cleaning Machine
    For end use/application segment, this report focuses on the status and outlook for key applications. End users sre also listed.
    * Commercial Use
    * Home Use

    For geography segment, regional supply, application-wise and type-wise demand, major players, price is presented from 2013 to 2023. This report covers following regions:
    * North America
    * South America
    * Asia & Pacific
    * Europe
    * MEA (Middle East and Africa)
    The key countries in each region are taken into consideration as well, such as United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

    Reasons to Purchase this Report:
    * Analyzing the outlook of the market with the recent trends and SWOT analysis
    * Market dynamics scenario, along with growth opportunities of the market in the years to come
    * Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and non-economic aspects
    * Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
    * Market value (USD Million) and volume (Units Million) data for each segment and sub-segment
    * Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
    * Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
    * 1-year analyst support, along with the data support in excel format.
    We also can offer customized report to fulfill special requirements of our clients. Regional and Countries report can be provided as well.

  5. M

    Medical Device Cleaning Market Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). Medical Device Cleaning Market Report [Dataset]. https://www.promarketreports.com/reports/medical-device-cleaning-market-6119
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Cleaning Agents: A diverse range of chemical cleaning agents dominates the market, catering to both manual and automated cleaning processes of medical devices. These agents are meticulously formulated to address specific device materials and contamination types while adhering to strict safety and efficacy standards. Automated Cleaning Systems: Automated cleaning machines offer significant advantages, including enhanced efficiency and consistency in cleaning protocols. This technology minimizes operator exposure to potentially hazardous materials and contributes to improved compliance with regulatory requirements, enhancing reproducibility and reducing human error. Robotics: The integration of robotics is revolutionizing complex device cleaning, offering precise and automated solutions previously unattainable through manual methods. Robotic systems excel in handling intricate device geometries and demanding cleaning tasks, pushing the boundaries of efficiency and hygiene. Single-Use Devices: The increasing adoption of single-use devices, while seemingly reducing cleaning needs, also impacts the market by creating demand for efficient disposal solutions and influencing the overall cleaning strategies of healthcare facilities. Recent developments include: Key player in the market are focusing on the R&D for the development of technologically advanced products to gain a key competitive advantage in the global medical device cleaning market. For instance, In April 2020, the U.S. FDA has approved the use of maX2, & maX low-temperature, Steris V-PRO 1 Plus, sterilization systems for decontamination of approximately 750,000 N95 respirators and similar masks each day in hospitals used for the treatment of Covid-19 patients amid the pandemic. This is expected to grow the goodwill of the company in the global market.. Key drivers for this market are: Growth in data traffic due to rising number of IoT devices across various industries, Rising demand for high reliability and low latency networks in manufacturing industries. Potential restraints include: High costs required for deployment of 5G network. Notable trends are: Advancements in nanotechnology is driving the market growth.

  6. Store Data Analysis using MS excel

    • kaggle.com
    Updated Mar 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NisshaaChoudhary (2024). Store Data Analysis using MS excel [Dataset]. https://www.kaggle.com/datasets/nisshaachoudhary/store-data-analysis-using-ms-excel/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    NisshaaChoudhary
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?

    And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables

  7. L

    Luggage Laser Cleaning System Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Luggage Laser Cleaning System Report [Dataset]. https://www.datainsightsmarket.com/reports/luggage-laser-cleaning-system-76313
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global luggage laser cleaning system market is poised for substantial growth, driven by increasing demand for efficient and effective cleaning solutions within the travel and logistics industry. The market, currently estimated at $250 million in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is fueled by several key factors. Firstly, the rising volume of luggage handled globally necessitates faster and more reliable cleaning methods. Traditional cleaning methods are often labor-intensive, time-consuming, and prone to inconsistencies. Laser cleaning offers a superior alternative, providing speed, precision, and consistent results, thus reducing operational costs and improving turnaround times for airlines and baggage handlers. Secondly, growing concerns regarding hygiene and sanitation, amplified by recent global events, are driving demand for advanced cleaning technologies capable of effectively removing stubborn contaminants like dirt, grime, and biological agents from luggage surfaces. Laser cleaning systems excel in this area, offering a non-contact, environmentally friendly solution. Market segmentation reveals significant opportunities in various application sectors. The high-power laser segment (above 500W) is expected to dominate due to its superior cleaning capacity and speed, making it ideal for high-throughput applications in airports and large baggage handling facilities. While the automobile manufacturing, aerospace, and machining industries currently represent significant segments, the growing adoption of laser cleaning in the luggage handling sector presents a major emerging market. Geographic segmentation shows strong growth potential in North America and Asia Pacific regions, driven by increasing air travel and robust logistics infrastructure. However, the market is likely to witness slower growth in regions with lower air travel volumes and less developed logistics networks. Competitive landscape analysis shows a mix of established laser technology companies and emerging players specializing in luggage handling solutions. The market will likely witness increased consolidation and strategic partnerships as companies strive for market share and technological advancement. Ultimately, the evolution of laser cleaning technology coupled with the industry’s growing focus on efficiency and hygiene will be key factors propelling market expansion throughout the forecast period.

  8. D

    Metal Cleaning Brush Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Metal Cleaning Brush Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/metal-cleaning-brush-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    The global market size of Metal Cleaning Brush is $XX million in 2018 with XX CAGR from 2014 to 2018, and it is expected to reach $XX million by the end of 2024 with a CAGR of XX% from 2019 to 2024.
    Global Metal Cleaning Brush Market Report 2019 - Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Metal Cleaning Brush industry. The key insights of the report:
    1.The report provides key statistics on the market status of the Metal Cleaning Brush manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry.
    2.The report provides a basic overview of the industry including its definition, applications and manufacturing technology.
    3.The report presents the company profile, product specifications, capacity, production value, and 2013-2018 market shares for key vendors.
    4.The total market is further divided by company, by country, and by application/type for the competitive landscape analysis.
    5.The report estimates 2019-2024 market development trends of Metal Cleaning Brush industry.
    6.Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out
    7.The report makes some important proposals for a new project of Metal Cleaning Brush Industry before evaluating its feasibility.
    There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.
    For competitor segment, the report includes global key players of Metal Cleaning Brush as well as some small players.
    The information for each competitor includes:
    * Company Profile
    * Main Business Information
    * SWOT Analysis
    * Sales, Revenue, Price and Gross Margin
    * Market Share

    For product type segment, this report listed main product type of Metal Cleaning Brush market
    * Product Type I
    * Product Type II
    * Product Type III

    For end use/application segment, this report focuses on the status and outlook for key applications. End users sre also listed.
    * Application I
    * Application II
    * Application III

    For geography segment, regional supply, application-wise and type-wise demand, major players, price is presented from 2013 to 2023. This report covers following regions:
    * North America
    * South America
    * Asia & Pacific
    * Europe
    * MEA (Middle East and Africa)
    The key countries in each region are taken into consideration as well, such as United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

    Reasons to Purchase this Report:
    * Analyzing the outlook of the market with the recent trends and SWOT analysis
    * Market dynamics scenario, along with growth opportunities of the market in the years to come
    * Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and non-economic aspects
    * Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
    * Market value (USD Million) and volume (Units Million) data for each segment and sub-segment
    * Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
    * Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
    * 1-year analyst support, along with the data support in excel format.
    We also can offer customized report to fulfill special requirements of our clients. Regional and Countries report can be provided as well.

  9. b

    Data from: Coarse datasets for the 2002-2010 Tsimane' Amazonian Panel...

    • scholarworks.brandeis.edu
    docx, pdf, xls
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ricardo Godoy; William R. Leonard; Victoria Reyes-Garcia; Tomas Huanca (2022). Coarse datasets for the 2002-2010 Tsimane' Amazonian Panel Study(TAPS) - Introduction and authorization [Dataset]. https://scholarworks.brandeis.edu/esploro/outputs/dataset/Coarse-datasets-for-the-2002-2010-Tsimane/9924097301801921
    Explore at:
    xls(1472000 bytes), pdf(140365 bytes), docx(32618 bytes)Available download formats
    Dataset updated
    Mar 15, 2022
    Authors
    Ricardo Godoy; William R. Leonard; Victoria Reyes-Garcia; Tomas Huanca
    Time period covered
    Mar 2022
    Measurement technique
    <p>See Chapter 4 of "Too little, too late" for general methods, and different chapters for methods on different topics</p>
    Description

    Introduction. This document provides an overview of an archive composed of four sections.

    [1] An introduction (this document) which describes the scope of the project

    [2] Yearly folder, from 2002 until 2010, of the coarse Microsoft Access datasets + the surveys used to collect information for each year. The word coarse does not mean the information in the Microsoft Access dataset was not corrected for mistakes; it was, but some mistakes and inconsistencies remain, such as with data on age or education. Furthermore, the coarse dataset provides disaggregated information for selected topics, which appear in summary statistics in the clean dataset. For example, in the coarse dataset one can find the different illnesses afflicting a person during the past 14 days whereas in the clean dataset only the total number of illnesses appears.

    [3] A letter from the Gran Consejo Tsimane’ authorizing the public use of de-identified data collected in our studies among Tsimane’.

    [4] A Microsoft Excel document with the unique identification number for each person in the panel study.


    Background. During 2002-2010, a team of international researchers, surveyors, and translators gathered longitudinal (panel) data on the demography, economy, social relations, health, nutritional status, local ecological knowledge, and emotions of about 1400 native Amazonians known as Tsimane’ who lived in thirteen villages near and far from towns in the department of Beni in the Bolivian Amazon. A report titled “Too little, too late” summarizes selected findings from the study and is available to the public at the electronic library of Brandeis University:

    https://scholarworks.brandeis.edu/permalink/01BRAND_INST/1bo2f6t/alma9923926194001921


    A copy of the clean, merged, and appended Stata (V17) dataset is available to the public at the following two web addresses:

    [a] Brandeis University:

    https://scholarworks.brandeis.edu/permalink/01BRAND_INST/1bo2f6t/alma9923926193901921

    [b] Inter-university Consortium for Political and Social Research (ICPSR), University of Michigan (only available to users affiliated with institutions belonging to ICPSR)

    http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37671/utilization

    Chapter 4 of the report “Too little, too late” mentioned above describes the motivation and history of the study, the difference between the coarse and clean datasets, and topics which can be examined only with coarse data.


    Aims. The aims of this archive are to:

    · Make available in Microsoft Access the coarse de-identified dataset [1] for each of the seven yearly surveys (2004-2010) and [2] one Access data based on quarterly surveys done during 2002 and 2003. Together, these two datasets form one longitudinal dataset of individuals, households, and villages.

    · Provide guidance on how to link files within and across years, and

    · Make available a Microsoft Excel file with a unique identification number to link individuals across years

    The datasets in the archive.

    · Eight Microsoft Access datasets with data on a wide range of variables. Except for the Access file for 2002-2003, all the other information in each of the other Access files refers to one year. Within any Access dataset, users will find two types of files:

    o Thematic files. The name of a thematic file contains the prefix tbl (e.g., 29_tbl_Demography or tbl_29_Demography). The file name (sometimes in Spanish, sometimes in English) indicates the content of the file. For example, in the Access dataset for one year, the micro file tbl_30_Ventas has all the information on sales for that year. Within each micro file, columns contain information on a variable and the name of the column indicates the content of the variable. For instance, the column heading item in the Sales file would indicate the type of good sold. The exac…

  10. D

    Manual Cleaning ProductzSales Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Manual Cleaning ProductzSales Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/manual-cleaning-productzsales-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    The global market size of Manual Cleaning ProductzSales is $XX million in 2018 with XX CAGR from 2014 to 2018, and it is expected to reach $XX million by the end of 2024 with a CAGR of XX% from 2019 to 2024.
    Global Manual Cleaning ProductzSales Market Report 2019 - Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Manual Cleaning ProductzSales industry. The key insights of the report:
    1.The report provides key statistics on the market status of the Manual Cleaning ProductzSales manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry.
    2.The report provides a basic overview of the industry including its definition, applications and manufacturing technology.
    3.The report presents the company profile, product specifications, capacity, production value, and 2013-2018 market shares for key vendors.
    4.The total market is further divided by company, by country, and by application/type for the competitive landscape analysis.
    5.The report estimates 2019-2024 market development trends of Manual Cleaning ProductzSales industry.
    6.Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out
    7.The report makes some important proposals for a new project of Manual Cleaning ProductzSales Industry before evaluating its feasibility.
    There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.
    For competitor segment, the report includes global key players of Manual Cleaning ProductzSales as well as some small players.
    The information for each competitor includes:
    * Company Profile
    * Main Business Information
    * SWOT Analysis
    * Sales, Revenue, Price and Gross Margin
    * Market Share

    For product type segment, this report listed main product type of Manual Cleaning ProductzSales market
    * Product Type I
    * Product Type II
    * Product Type III

    For end use/application segment, this report focuses on the status and outlook for key applications. End users sre also listed.
    * Application I
    * Application II
    * Application III

    For geography segment, regional supply, application-wise and type-wise demand, major players, price is presented from 2013 to 2023. This report covers following regions:
    * North America
    * South America
    * Asia & Pacific
    * Europe
    * MEA (Middle East and Africa)
    The key countries in each region are taken into consideration as well, such as United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

    Reasons to Purchase this Report:
    * Analyzing the outlook of the market with the recent trends and SWOT analysis
    * Market dynamics scenario, along with growth opportunities of the market in the years to come
    * Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and non-economic aspects
    * Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
    * Market value (USD Million) and volume (Units Million) data for each segment and sub-segment
    * Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
    * Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
    * 1-year analyst support, along with the data support in excel format.
    We also can offer customized report to fulfill special requirements of our clients. Regional and Countries report can be provided as well.

  11. D

    Steam Cleaning Machin Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Steam Cleaning Machin Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/steam-cleaning-machin-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    The global market size of Steam Cleaning Machin is $XX million in 2018 with XX CAGR from 2014 to 2018, and it is expected to reach $XX million by the end of 2024 with a CAGR of XX% from 2019 to 2024.
    Global Steam Cleaning Machin Market Report 2019 - Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Steam Cleaning Machin industry. The key insights of the report:
    1.The report provides key statistics on the market status of the Steam Cleaning Machin manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry.
    2.The report provides a basic overview of the industry including its definition, applications and manufacturing technology.
    3.The report presents the company profile, product specifications, capacity, production value, and 2013-2018 market shares for key vendors.
    4.The total market is further divided by company, by country, and by application/type for the competitive landscape analysis.
    5.The report estimates 2019-2024 market development trends of Steam Cleaning Machin industry.
    6.Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out
    7.The report makes some important proposals for a new project of Steam Cleaning Machin Industry before evaluating its feasibility.
    There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.
    For competitor segment, the report includes global key players of Steam Cleaning Machin as well as some small players.
    The information for each competitor includes:
    * Company Profile
    * Main Business Information
    * SWOT Analysis
    * Sales, Revenue, Price and Gross Margin
    * Market Share

    For product type segment, this report listed main product type of Steam Cleaning Machin market
    * Product Type I
    * Product Type II
    * Product Type III

    For end use/application segment, this report focuses on the status and outlook for key applications. End users sre also listed.
    * Application I
    * Application II
    * Application III

    For geography segment, regional supply, application-wise and type-wise demand, major players, price is presented from 2013 to 2023. This report covers following regions:
    * North America
    * South America
    * Asia & Pacific
    * Europe
    * MEA (Middle East and Africa)
    The key countries in each region are taken into consideration as well, such as United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

    Reasons to Purchase this Report:
    * Analyzing the outlook of the market with the recent trends and SWOT analysis
    * Market dynamics scenario, along with growth opportunities of the market in the years to come
    * Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and non-economic aspects
    * Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
    * Market value (USD Million) and volume (Units Million) data for each segment and sub-segment
    * Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
    * Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
    * 1-year analyst support, along with the data support in excel format.
    We also can offer customized report to fulfill special requirements of our clients. Regional and Countries report can be provided as well.

  12. D

    Component Cleaning Machine Market Report | Global Forecast From 2025 To 2033...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Component Cleaning Machine Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/component-cleaning-machine-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    The global market size of Component Cleaning Machine is $XX million in 2018 with XX CAGR from 2014 to 2018, and it is expected to reach $XX million by the end of 2024 with a CAGR of XX% from 2019 to 2024.
    Global Component Cleaning Machine Market Report 2019 - Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Component Cleaning Machine industry. The key insights of the report:
    1.The report provides key statistics on the market status of the Component Cleaning Machine manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry.
    2.The report provides a basic overview of the industry including its definition, applications and manufacturing technology.
    3.The report presents the company profile, product specifications, capacity, production value, and 2013-2018 market shares for key vendors.
    4.The total market is further divided by company, by country, and by application/type for the competitive landscape analysis.
    5.The report estimates 2019-2024 market development trends of Component Cleaning Machine industry.
    6.Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out
    7.The report makes some important proposals for a new project of Component Cleaning Machine Industry before evaluating its feasibility.
    There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.
    For competitor segment, the report includes global key players of Component Cleaning Machine as well as some small players.
    The information for each competitor includes:
    * Company Profile
    * Main Business Information
    * SWOT Analysis
    * Sales, Revenue, Price and Gross Margin
    * Market Share

    For product type segment, this report listed main product type of Component Cleaning Machine market
    * Product Type I
    * Product Type II
    * Product Type III

    For end use/application segment, this report focuses on the status and outlook for key applications. End users sre also listed.
    * Application I
    * Application II
    * Application III

    For geography segment, regional supply, application-wise and type-wise demand, major players, price is presented from 2013 to 2023. This report covers following regions:
    * North America
    * South America
    * Asia & Pacific
    * Europe
    * MEA (Middle East and Africa)
    The key countries in each region are taken into consideration as well, such as United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

    Reasons to Purchase this Report:
    * Analyzing the outlook of the market with the recent trends and SWOT analysis
    * Market dynamics scenario, along with growth opportunities of the market in the years to come
    * Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and non-economic aspects
    * Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
    * Market value (USD Million) and volume (Units Million) data for each segment and sub-segment
    * Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
    * Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
    * 1-year analyst support, along with the data support in excel format.
    We also can offer customized report to fulfill special requirements of our clients. Regional and Countries report can be provided as well.

  13. D

    Cleaning Mask Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Cleaning Mask Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/cleaning-mask-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    The global market size of Cleaning Mask is $XX million in 2018 with XX CAGR from 2014 to 2018, and it is expected to reach $XX million by the end of 2024 with a CAGR of XX% from 2019 to 2024.
    Global Cleaning Mask Market Report 2019 - Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Cleaning Mask industry. The key insights of the report:
    1.The report provides key statistics on the market status of the Cleaning Mask manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry.
    2.The report provides a basic overview of the industry including its definition, applications and manufacturing technology.
    3.The report presents the company profile, product specifications, capacity, production value, and 2013-2018 market shares for key vendors.
    4.The total market is further divided by company, by country, and by application/type for the competitive landscape analysis.
    5.The report estimates 2019-2024 market development trends of Cleaning Mask industry.
    6.Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out
    7.The report makes some important proposals for a new project of Cleaning Mask Industry before evaluating its feasibility.
    There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.
    For competitor segment, the report includes global key players of Cleaning Mask as well as some small players.
    The information for each competitor includes:
    * Company Profile
    * Main Business Information
    * SWOT Analysis
    * Sales, Revenue, Price and Gross Margin
    * Market Share

    For product type segment, this report listed main product type of Cleaning Mask market
    * Product Type I
    * Product Type II
    * Product Type III

    For end use/application segment, this report focuses on the status and outlook for key applications. End users sre also listed.
    * Application I
    * Application II
    * Application III

    For geography segment, regional supply, application-wise and type-wise demand, major players, price is presented from 2013 to 2023. This report covers following regions:
    * North America
    * South America
    * Asia & Pacific
    * Europe
    * MEA (Middle East and Africa)
    The key countries in each region are taken into consideration as well, such as United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

    Reasons to Purchase this Report:
    * Analyzing the outlook of the market with the recent trends and SWOT analysis
    * Market dynamics scenario, along with growth opportunities of the market in the years to come
    * Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and non-economic aspects
    * Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
    * Market value (USD Million) and volume (Units Million) data for each segment and sub-segment
    * Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
    * Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
    * 1-year analyst support, along with the data support in excel format.
    We also can offer customized report to fulfill special requirements of our clients. Regional and Countries report can be provided as well.

  14. Tata Motors Sales Analysis (2021-2022)

    • kaggle.com
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    numen_Vikrant (2023). Tata Motors Sales Analysis (2021-2022) [Dataset]. https://www.kaggle.com/datasets/numenvikrant/tata-motors-sales-analysis-2021-2022
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Kaggle
    Authors
    numen_Vikrant
    Description

    I'm excited to share my recent project where I dived deep into the world of data analysis to gain valuable insights into Tata Motors' sales data for the fiscal year 2021-2022. 📈

    Project Highlights:

    1. Data Processing and Cleaning: I meticulously cleaned and processed the dataset, ensuring accuracy and reliability in the analysis.

    2. In-Depth Analysis: Through advanced analytical techniques, I uncovered patterns, trends, and key metrics within the data, helping to reveal critical business insights.

    3. Data Visualization: I transformed the complex sales data into clear and insightful visual representations, making it easier for stakeholders to grasp the findings.

    4. Interactive Dashboard: I designed an interactive dashboard that allows users to explore the data dynamically, facilitating a deeper understanding of the sales performance.

    5. Findings: Tata Motors achieved 105% growth in sales, marking an impressive 126% profit increase compared to the year 2021.

    This remarkable growth not only showcases the company's resilience but also the effectiveness of their strategies and operations. It's a testament to the hard work and dedication of the entire Tata Motors team.

  15. o

    Data from: Skepticism in science and punitive attitudes

    • openicpsr.org
    delimited
    Updated May 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Rydberg; Luke DeZago (2025). Skepticism in science and punitive attitudes [Dataset]. http://doi.org/10.3886/E228541V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    May 4, 2025
    Dataset provided by
    University of Massachusetts Lowell
    Authors
    Jason Rydberg; Luke DeZago
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Replication materials for the manuscript "Skepticism in Science and Punitive Attitudes", published in the Journal of Criminal Justice.Note that the GSS repeated cross sections for 1972 to 2018 are too large to upload here, but they can be accessed from https://gss.norc.org/content/dam/gss/get-the-data/documents/spss/GSS_spss.zipIncluded here are:(A link to the repeated cross-sections data)Each of the 3 wave panels (2006-2010; 2008-2012; 2010-2014)Replication R script for the repeated cross sections cleaning and analysisReplication R script for the panel data cleaning and analysisAn excel spreadsheet with Uniform Crime Report data to merge to the cross sections.

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis
Organization logo

Superstore Sales Analysis

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 21, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Ali Reda Elblgihy
Description

Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

1- Data Import and Transformation:

  • Gather and import relevant sales data from various sources into Excel.
  • Utilize Power Query to clean, transform, and structure the data for analysis.
  • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

2- Data Quality Assessment:

  • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
  • Standardize data formats and ensure that all data is in a consistent, usable state.

3- Calculating COGS:

  • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
  • Apply appropriate formulas and calculations to determine COGS accurately.

4- Discount Analysis:

  • Analyze the discount values offered on products to understand their impact on sales and profitability.
  • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

5- Sales Metrics:

  • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
  • Utilize Excel functions to compute these metrics and create visuals for better insights.

6- Visualization:

  • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
  • Visual representations can help identify trends, outliers, and patterns in the data.

7- Report Generation:

  • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

Search
Clear search
Close search
Google apps
Main menu