100+ datasets found
  1. Countries with the highest birth rate 2024

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest birth rate 2024 [Dataset]. https://www.statista.com/statistics/264704/ranking-of-the-20-countries-with-the-highest-birth-rate/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Niger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest-growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, Africa's population is forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.

  2. Countries with the highest fertility rates 2025

    • statista.com
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest fertility rates 2025 [Dataset]. https://www.statista.com/statistics/262884/countries-with-the-highest-fertility-rates/
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.

  3. G

    Birth rate by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Birth rate by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/birth_rate/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Nov 18, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2022
    Area covered
    World
    Description

    The average for 2022 based on 195 countries was 18.38 births per 1000 people. The highest value was in Niger: 45.03 births per 1000 people and the lowest value was in Hong Kong: 4.4 births per 1000 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.

  4. World Health Survey 2003 - India

    • catalog.ihsn.org
    • dev.ihsn.org
    • +3more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). World Health Survey 2003 - India [Dataset]. http://catalog.ihsn.org/catalog/2247
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    India
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  5. Countries with the lowest fertility rates 2024

    • statista.com
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the lowest fertility rates 2024 [Dataset]. https://www.statista.com/statistics/268083/countries-with-the-lowest-fertility-rates/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    The statistic shows the 20 countries with the lowest fertility rates in 2024. All figures are estimates. In 2024, the fertility rate in Taiwan was estimated to be at 1.11 children per woman, making it the lowest fertility rate worldwide. Fertility rate The fertility rate is the average number of children born per woman of child-bearing age in a country. Usually, a woman aged between 15 and 45 is considered to be in her child-bearing years. The fertility rate of a country provides an insight into its economic state, as well as the level of health and education of its population. Developing countries usually have a higher fertility rate due to lack of access to birth control and contraception, and to women usually foregoing a higher education, or even any education at all, in favor of taking care of housework. Many families in poorer countries also need their children to help provide for the family by starting to work early and/or as caretakers for their parents in old age. In developed countries, fertility rates and birth rates are usually much lower, as birth control is easier to obtain and women often choose a career before becoming a mother. Additionally, if the number of women of child-bearing age declines, so does the fertility rate of a country. As can be seen above, countries like Hong Kong are a good example for women leaving the patriarchal structures and focusing on their own career instead of becoming a mother at a young age, causing a decline of the country’s fertility rate. A look at the fertility rate per woman worldwide by income group also shows that women with a low income tend to have more children than those with a high income. The United States are neither among the countries with the lowest, nor among those with the highest fertility rate, by the way. At 2.08 children per woman, the fertility rate in the US has been continuously slightly below the global average of about 2.4 children per woman over the last decade.

  6. M

    Morocco MA: Prevalence of Overweight: Weight for Height: Male: % of Children...

    • ceicdata.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Morocco MA: Prevalence of Overweight: Weight for Height: Male: % of Children Under 5 [Dataset]. https://www.ceicdata.com/en/morocco/health-statistics/ma-prevalence-of-overweight-weight-for-height-male--of-children-under-5
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2011
    Area covered
    Morocco
    Description

    Morocco MA: Prevalence of Overweight: Weight for Height: Male: % of Children Under 5 data was reported at 12.500 % in 2011. This records a decrease from the previous number of 14.300 % for 2003. Morocco MA: Prevalence of Overweight: Weight for Height: Male: % of Children Under 5 data is updated yearly, averaging 12.500 % from Dec 1987 (Median) to 2011, with 5 observations. The data reached an all-time high of 15.400 % in 1997 and a record low of 5.900 % in 1987. Morocco MA: Prevalence of Overweight: Weight for Height: Male: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Morocco – Table MA.World Bank: Health Statistics. Prevalence of overweight, male, is the percentage of boys under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Estimates of overweight children are also from national survey data. Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues

  7. f

    Data from: Birth Weight and Long-Term Overweight Risk: Systematic Review and...

    • datasetcatalog.nlm.nih.gov
    Updated Oct 17, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harder, Thomas; Schellong, Karen; Plagemann, Andreas; Schulz, Sandra (2012). Birth Weight and Long-Term Overweight Risk: Systematic Review and a Meta-Analysis Including 643,902 Persons from 66 Studies and 26 Countries Globally [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001141914
    Explore at:
    Dataset updated
    Oct 17, 2012
    Authors
    Harder, Thomas; Schellong, Karen; Plagemann, Andreas; Schulz, Sandra
    Description

    BackgroundOverweight is among the major challenging health risk factors. It has been claimed that birth weight, being a critical indicator of prenatal developmental conditions, is related to long-term overweight risk. In order to check this important assumption of developmental and preventive medicine, we performed a systematic review and comprehensive meta-analysis. Methods and FindingsRelevant studies published up to January 2011 that investigated the relation between birth weight and later risk of overweight were identified through literature searches using MEDLINE and EMBASE. For meta-analysis, 66 studies from 26 countries and five continents were identified to be eligible, including 643,902 persons aged 1 to 75 years. We constructed random-effects and fixed-effects models, performed subgroup-analyses, influence-analyses, assessed heterogeneity and publication bias, performed meta-regression analysis as well as analysis of confounder adjusted data. Meta-regression revealed a linear positive relationship between birth weight and later overweight risk (p<0.001). Low birth weight (<2,500 g) was found to be followed by a decreased risk of overweight (odds ratio (OR) = 0.67; 95% confidence interval (CI) 0.59–0.76). High birth weight (>4,000 g) was associated with increased risk of overweight (OR = 1.66; 95% CI 1.55–1.77). Results did not change significantly by using normal birth weight (2,500–4,000 g) as reference category (OR = 0.73, 95% CI 0.63–0.84, and OR = 1.60, 95% CI 1.45–1.77, respectively). Subgroup- and influence-analyses revealed no indication for bias/confounding. Adjusted estimates indicate a doubling of long-term overweight risk in high as compared to normal birth weight subjects (OR = 1.96, 95% CI 1.43–2.67). ConclusionsFindings demonstrate that low birth weight is followed by a decreased long-term risk of overweight, while high birth weight predisposes for later overweight. Preventing in-utero overnutrition, e.g., by avoiding maternal overnutrition, overweight and/or diabetes during pregnancy, might therefore be a promising strategy of genuine overweight prevention, globally.

  8. World Health Survey 2003 - Burkina Faso

    • dev.ihsn.org
    • apps.who.int
    • +3more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). World Health Survey 2003 - Burkina Faso [Dataset]. https://dev.ihsn.org/nada/catalog/73121
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Burkina Faso
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  9. World Health Survey 2003 - Sweden

    • catalog.ihsn.org
    • apps.who.int
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). World Health Survey 2003 - Sweden [Dataset]. http://catalog.ihsn.org/catalog/3824
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Sweden
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  10. f

    Supplementary Material for: Association between Characteristics at Birth,...

    • karger.figshare.com
    • commons.datacite.org
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rito A.I.; Buoncristiano M.; Spinelli A.; Salanave B.; Kunešová M.; Hejgaard T.; GarcíaSolano M.; Fijałkowska A.; Sturua L.; Hyska J.; Kelleher C.; Duleva V.; MusićMilanović S.; FarrugiaSant’Angelo V.; Abdrakhmanova S.; Kujundzic E.; Peterkova V.; Gualtieri A.; Pudule I.; Petrauskienė A.; Tanrygulyyeva M.; Sherali R.; Huidumac-Petrescu C.; Williams J.; Ahrens W.; Breda J. (2023). Supplementary Material for: Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative – COSI 2015/2017 [Dataset]. http://doi.org/10.6084/m9.figshare.8046275.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Karger Publishers
    Authors
    Rito A.I.; Buoncristiano M.; Spinelli A.; Salanave B.; Kunešová M.; Hejgaard T.; GarcíaSolano M.; Fijałkowska A.; Sturua L.; Hyska J.; Kelleher C.; Duleva V.; MusićMilanović S.; FarrugiaSant’Angelo V.; Abdrakhmanova S.; Kujundzic E.; Peterkova V.; Gualtieri A.; Pudule I.; Petrauskienė A.; Tanrygulyyeva M.; Sherali R.; Huidumac-Petrescu C.; Williams J.; Ahrens W.; Breda J.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: In Europe, although the prevalence of childhood obesity seems to be plateauing in some countries, progress on tackling this important public health issue remains slow and inconsistent. Breastfeeding has been described as a protective factor, and the more exclusively and the longer children are breastfed, the greater their protection from obesity. Birth weight has been shown to have a positive association with later risk for obesity. Objectives: It was the aim of this paper to investigate the association of early-life factors, namely breastfeeding, exclusive breastfeeding and birth weight, with obesity among children. Method: Data from 22 participating countries in the WHO European COSI study (round 4: 2015/2017) were collected using cross-sectional, nationally representative samples of 6- to 9-year-olds (n = 100,583). The children’s standardized weight and height measurements followed a common WHO protocol. Information on the children’s birth weight and breastfeeding practice and duration was collected through a family record form. A multivariate multilevel logistic regression analysis regarding breastfeeding practice (both general and exclusive) and characteristics at birth was performed. Results: The highest prevalence rates of obesity were observed in Spain (17.7%), Malta (17.2%) and Italy (16.8%). A wide between-country disparity in breastfeeding prevalence was found. Tajikistan had the highest percentage of children that were breastfed for ≥6 months (94.4%) and exclusively breastfed for ≥6 months (73.3%). In France, Ireland and Malta, only around 1 in 4 children was breastfed for ≥6 months. Italy and Malta showed the highest prevalence of obesity among children who have never been breastfed (21.2%), followed by Spain (21.0%). The pooled analysis showed that, compared to children who were breastfed for at least 6 months, the odds of being obese were higher among children never breastfed or breastfed for a shorter period, both in case of general (adjusted odds ratio [adjOR] [95% CI] 1.22 [1.16–1.28] and 1.12 [1.07–1.16], respectively) and exclusive breastfeeding (adjOR [95% CI] 1.25 [1.17–1.36] and 1.05 [0.99–1.12], respectively). Higher birth weight was associated with a higher risk of being overweight, which was reported in 11 out of the 22 countries. Bulgaria, Croatia, France, Italy, Poland and Romania showed that children who were preterm at birth had higher odds of being obese, compared to children who were full-term babies. Conclusion: The present work confirms the beneficial effect of breastfeeding against obesity, which was highly increased if children had never been breastfed or had been breastfed for a shorter period. Nevertheless, adoption of exclusive breastfeeding is below global recommendations and far from the target endorsed by the WHO Member States at the World Health Assembly Global Targets for Nutrition of increasing the prevalence of exclusive breastfeeding in the first 6 months up to at least 50% by 2025.

  11. World Health Survey 2003 - United Kingdom

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +3more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). World Health Survey 2003 - United Kingdom [Dataset]. https://dev.ihsn.org/nada/catalog/74586
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    United Kingdom
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  12. d

    Rank likelihood-based estimation of low birth weight in Ethiopia

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Biftu Bekalo (2025). Rank likelihood-based estimation of low birth weight in Ethiopia [Dataset]. http://doi.org/10.5061/dryad.3j9kd51sg
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Daniel Biftu Bekalo
    Description

    Low birth weight is a significant risk factor associated with high rates of neonatal and infant mortality, particularly in developing countries. However, most studies conducted on this topic in Ethiopia have small sample sizes, often focusing on specific areas and using standard models employing maximum likelihood estimation, leading to potential bias and inaccurate coverage probability. This study used a novel approach, the Bayesian rank likelihood method, within a latent traits model, to estimate parameters and provide a nationwide estimate of low birth weight and its risk factors in Ethiopia. Data from the Ethiopian Demographic and Health Survey (EDHS) of 2016 were used as a data source for the study. Data stratified all regions into urban and rural areas. Among 15, 680 representative selected households, the analysis included complete cases from 10, 641 children. The evaluation of model performance considered metrics such as the root mean square error, the mean absolute error, and t..., , , # Rank likelihood-based estimation of low birth weight in Ethiopia

    Low birth weight data was obtained from the Ethiopian Demographic and Health Survey (EDHS).

    Raw data: Lowbirthweight.sav

    Description of the data and file structure

    Lowbirthweightdata_data

    childweight: categorical weight of the child at birth motherage: age of the mothers ancvisti: number of antenatal care visits that the mothers attended birthorder: order of birth for the child birthinterval: time between successive births (months) bmi: body mass index of the mothers Regions: the region where the child born CLID: cluster-level ID that indicates from which cluster the information is obtained

    Sharing or accessing information

    Our data is taken from the DHS website (http://dhsprogram.com. Low birth weight data was extracted from the 2016 EDHS. EDHS 2016 was conducted using standardized survey design and data collection procedures.

  13. World Health Survey 2003, Wave 0 - China

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 17, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003, Wave 0 - China [Dataset]. https://microdata.worldbank.org/index.php/catalog/1699
    Explore at:
    Dataset updated
    Oct 17, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    China
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  14. f

    Data from: Cancer Mortality by Country of Birth, Sex, and Socioeconomic...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moradi, Tahereh; Abdoli, Gholamreza; Bottai, Matteo (2014). Cancer Mortality by Country of Birth, Sex, and Socioeconomic Position in Sweden, 1961–2009 [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001245500
    Explore at:
    Dataset updated
    Mar 28, 2014
    Authors
    Moradi, Tahereh; Abdoli, Gholamreza; Bottai, Matteo
    Area covered
    Sweden
    Description

    In 2010, cancer deaths accounted for more than 15% of all deaths worldwide, and this fraction is estimated to rise in the coming years. Increased cancer mortality has been observed in immigrant populations, but a comprehensive analysis by country of birth has not been conducted. We followed all individuals living in Sweden between 1961 and 2009 (7,109,327 men and 6,958,714 women), and calculated crude cancer mortality rates and age-standardized rates (ASRs) using the world population for standardization. We observed a downward trend in all-site ASRs over the past two decades in men regardless of country of birth but no such trend was found in women. All-site cancer mortality increased with decreasing levels of education regardless of sex and country of birth (p for trend <0.001). We also compared cancer mortality rates among foreign-born (13.9%) and Sweden-born (86.1%) individuals and determined the effect of education level and sex estimated by mortality rate ratios (MRRs) using multivariable Poisson regression. All-site cancer mortality was slightly higher among foreign-born than Sweden-born men (MRR = 1.05, 95% confidence interval 1.04–1.07), but similar mortality risks was found among foreign-born and Sweden-born women. Men born in Angola, Laos, and Cambodia had the highest cancer mortality risk. Women born in all countries except Iceland, Denmark, and Mexico had a similar or smaller risk than women born in Sweden. Cancer-specific mortality analysis showed an increased risk for cervical and lung cancer in both sexes but a decreased risk for colon, breast, and prostate cancer mortality among foreign-born compared with Sweden-born individuals. Further studies are required to fully understand the causes of the observed inequalities in mortality across levels of education and countries of birth.

  15. f

    The relative risk of smoking for migrants with low, middle and high...

    • datasetcatalog.nlm.nih.gov
    Updated Mar 8, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bosdriesz, Jizzo R.; Kunst, Anton E.; Lichthart, Nienke; Stronks, Karien; Busschers, Wim B.; Witvliet, Margot I. (2013). The relative risk of smoking for migrants with low, middle and high educational level compared to the US-born group of the same educational level, by country of origin1. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001729473
    Explore at:
    Dataset updated
    Mar 8, 2013
    Authors
    Bosdriesz, Jizzo R.; Kunst, Anton E.; Lichthart, Nienke; Stronks, Karien; Busschers, Wim B.; Witvliet, Margot I.
    Area covered
    United States
    Description

    1Country of origin is country of birth, except for second generation migrants where it is the country of birth of the parents.2Education: Low = no higher than ‘12th grade without diploma’, Middle = from ‘high school diploma or equivalent’ to ‘college but no degree’, High = from ‘associate degree’ to ‘doctorate degree’.3Group was too small.*Significant (p≤0.05).**Other Africa: Ghana, Kenya and South Africa.

  16. W

    National Demographic Survey 1993

    • cloud.csiss.gmu.edu
    Updated Dec 9, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    default (2016). National Demographic Survey 1993 [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/national-demographic-survey-1993
    Explore at:
    Dataset updated
    Dec 9, 2016
    Dataset provided by
    default
    Description

    The 1993 National Demographic Survey (NDS) is a nationally representative sample survey of women age 15-49 designed to collect information on fertility; family planning; infant, child and maternal mortality; and maternal and child health. The survey was conducted between April and June 1993. The 1993 NDS was carried out by the National Statistics Office in collaboration with the Department of Health, the University of the Philippines Population Institute, and other agencies concerned with population, health and family planning issues. Funding for the 1993 NDS was provided by the U.S. Agency for International Development through the Demographic and Health Surveys Program. Close to 13,000 households throughout the country were visited during the survey and more than 15,000 women age 15-49 were interviewed. The results show that fertility in the Philippines continues its gradual decline. At current levels, Filipino women will give birth on average to 4.1 children during their reproductive years, 0.2 children less than that recorded in 1988. However, the total fertility rate in the Philippines remains high in comparison to the level achieved in the neighboring Southeast Asian countries. The primary objective of the 1993 NDS is to provide up-to-date inform ation on fertility and mortality levels; nuptiality; fertility preferences; awareness, approval, and use of family planning methods; breastfeeding practices; and maternal and child health. This information is intended to assist policymakers and administrators in evaluating and designing programs and strategies for improving health and family planning services in 'the country. MAIN RESULTS Fertility varies significantly by region and socioeconomic characteristics. Urban women have on average 1.3 children less than rural women, and uneducated women have one child more than women with college education. Women in Bicol have on average 3 more children than women living in Metropolitan Manila. Virtually all women know of a family planning method; the pill, female sterilization, IUD and condom are known to over 90 percent of women. Four in 10 married women are currently using contraception. The most popular method is female sterilization ( 12 percent), followed by the piU (9 percent), and natural family planning and withdrawal, both used by 7 percent of married women. Contraceptive use is highest in Northern Mindanao, Central Visayas and Southern Mindanao, in urban areas, and among women with higher than secondary education. The contraceptive prevalence rate in the Philippines is markedly lower than in the neighboring Southeast Asian countries; the percentage of married women who were using family planning in Thailand was 66 percent in 1987, and 50 percent in Indonesia in 199l. The majority of contraceptive users obtain their methods from a public service provider (70 percent). Government health facilities mainly provide permanent methods, while barangay health stations or health centers are the main sources for the pill, IUD and condom. Although Filipino women already marry at a relatively higher age, they continue to delay the age at which they first married. Half of Filipino women marry at age 21.6. Most women have their first sexual intercourse after marriage. Half of married women say that they want no more children, and 12 percent have been sterilized. An additional 19 percent want to wait at least two years before having another child. Almost two thirds of women in the Philippines express a preference for having 3 or less children. Results from the survey indicate that if all unwanted births were avoided, the total fertility rate would be 2.9 children, which is almost 30 percent less than the observed rate, More than one quarter of married women in the Philippines are not using any contraceptive method, but want to delay their next birth for two years or more (12 percent), or want to stop childbearing (14 percent). If the potential demand for family planning is satisfied, the contraceptive prevalence rate could increase to 69 percent. The demand for stopping childbearing is about twice the level for spacing (45 and 23 percent, respectively). Information on various aspects of maternal and child health-antenatal care, vaccination, breastfeeding and food supplementation, and illness was collected in the 1993 NDS on births in the five years preceding the survey. The findings show that 8 in 10 children under five were bom to mothers who received antenatal care from either midwives or nurses (45 percent) or doctors (38 percent). Delivery by a medical personnel is received by more than half of children born in the five years preceding the survey. However, the majority of deliveries occurred at home. Tetanus, a leading cause of infant deaths, can be prevented by immunization of the mother during pregnancy. In the Philippines, two thirds of bitlhs in the five years preceding the survey were to mothers who received a tetanus toxoid injection during pregnancy. Based on reports of mothers and information obtained from health cards, 90 percent of children aged 12-23 months have received shots of the BCG as well as the first doses of DPT and polio, and 81 percent have received immunization from measles. Immunization coverage declines with doses; the drop out rate is 3 to 5 percent for children receiving the full dose series of DPT and polio. Overall, 7 in 10 children age 12-23 months have received immunization against the six principal childhood diseases-polio, diphtheria, ~rtussis, tetanus, measles and tuberculosis. During the two weeks preceding the survey, 1 in 10 children under 5 had diarrhea. Four in ten of these children were not treated. Among those who were treated, 27 percent were given oral rehydration salts, 36 percent were given recommended home solution or increased fluids. Breasffeeding is less common in the Philippines than in many other developing countries. Overall, a total of 13 percent of children born in the 5 years preceding the survey were not breastfed at all. On the other hand, bottle feeding, a widely discouraged practice, is relatively common in the Philippines. Children are weaned at an early age; one in four children age 2-3 months were exclusively breastfed, and the mean duration of breastfeeding is less than 3 months. Infant and child mortality in the Philippines have declined significantly in the past two decades. For every 1,000 live births, 34 infants died before their first birthday. Childhood mortality varies significantly by mother's residence and education. The mortality of urban infants is about 40 percent lower than that of rural infants. The probability of dying among infants whose mother had no formal schooling is twice as high as infants whose mother have secondary or higher education. Children of mothers who are too young or too old when they give birth, have too many prior births, or give birth at short intervals have an elevated mortality risk. Mortality risk is highest for children born to mothers under age 19. The 1993 NDS also collected information necessary for the calculation of adult and maternal mortality using the sisterhood method. For both males and females, at all ages, male mortality is higher than that of females. Matemal mortality ratio for the 1980-1986 is estimated at 213 per 100,000 births, and for the 1987-1993 period 209 per 100,000 births. However, due to the small number of sibling deaths reported in the survey, age-specific rates should be used with caution. Information on health and family planning services available to the residents of the 1993 NDS barangay was collected from a group of respondents in each location. Distance and time to reach a family planning service provider has insignificant association with whether a woman uses contraception or the choice of contraception being used. On the other hand, being close to a hospital increases the likelihood that antenatal care and births are to respondents who receive ANC and are delivered by a medical personnel or delivered in a health facility.

  17. f

    Data from: Maternal age and offspring developmental vulnerability at age...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Apr 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eades, Sandra; Brownell, Marni; Hanly, Mark; Banks, Emily; Lynch, John; Chambers, Georgina; Falster, Kathleen; Jorm, Louisa (2018). Maternal age and offspring developmental vulnerability at age five: A population-based cohort study of Australian children [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000656051
    Explore at:
    Dataset updated
    Apr 24, 2018
    Authors
    Eades, Sandra; Brownell, Marni; Hanly, Mark; Banks, Emily; Lynch, John; Chambers, Georgina; Falster, Kathleen; Jorm, Louisa
    Description

    BackgroundIn recent decades, there has been a shift to later childbearing in high-income countries. There is limited large-scale evidence of the relationship between maternal age and child outcomes beyond the perinatal period. The objective of this study is to quantify a child’s risk of developmental vulnerability at age five, according to their mother’s age at childbirth.Methods and findingsLinkage of population-level perinatal, hospital, and birth registration datasets to data from the Australian Early Development Census (AEDC) and school enrolments in Australia’s most populous state, New South Wales (NSW), enabled us to follow a cohort of 99,530 children from birth to their first year of school in 2009 or 2012. The study outcome was teacher-reported child development on five domains measured by the AEDC, including physical health and well-being, emotional maturity, social competence, language and cognitive skills, and communication skills and general knowledge. Developmental vulnerability was defined as domain scores below the 2009 AEDC 10th percentile cut point.The mean maternal age at childbirth was 29.6 years (standard deviation [SD], 5.7), with 4,382 children (4.4%) born to mothers aged <20 years and 20,026 children (20.1%) born to mothers aged ≥35 years. The proportion vulnerable on ≥1 domains was 21% overall and followed a reverse J-shaped distribution according to maternal age: it was highest in children born to mothers aged ≤15 years, at 40% (95% CI, 32–49), and was lowest in children born to mothers aged between 30 years and ≤35 years, at 17%–18%. For maternal ages 36 years to ≥45 years, the proportion vulnerable on ≥1 domains increased to 17%–24%. Adjustment for sociodemographic characteristics significantly attenuated vulnerability risk in children born to younger mothers, while adjustment for potentially modifiable factors, such as antenatal visits, had little additional impact across all ages. Although the multi-agency linkage yielded a broad range of sociodemographic, perinatal, health, and developmental variables at the child’s birth and school entry, the study was necessarily limited to variables available in the source data, which were mostly recorded for administrative purposes.ConclusionsIncreasing maternal age was associated with a lesser risk of developmental vulnerability for children born to mothers aged 15 years to about 30 years. In contrast, increasing maternal age beyond 35 years was generally associated with increasing vulnerability, broadly equivalent to the risk for children born to mothers in their early twenties, which is highly relevant in the international context of later childbearing. That socioeconomic disadvantage explained approximately half of the increased risk of developmental vulnerability associated with younger motherhood suggests there may be scope to improve population-level child development through policies and programs that support disadvantaged mothers and children.

  18. World Health Survey 2003 - Finland

    • microdata.worldbank.org
    • apps.who.int
    • +2more
    Updated Oct 17, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Finland [Dataset]. https://microdata.worldbank.org/index.php/catalog/1711
    Explore at:
    Dataset updated
    Oct 17, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Finland
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  19. f

    Full datasets analyzed during the current study.

    • figshare.com
    xlsx
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nigus Kabtu Belete; Abebe Gedefaw Belete; Darik Temesgen Assefa; Muluken Bekele Sorrie; Manaye Yihune Teshale (2025). Full datasets analyzed during the current study. [Dataset]. http://doi.org/10.1371/journal.pone.0325450.s006
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Nigus Kabtu Belete; Abebe Gedefaw Belete; Darik Temesgen Assefa; Muluken Bekele Sorrie; Manaye Yihune Teshale
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionMaternal anemia is a major public health concern that affects women globally, with a particularly high prevalence in developing countries, notably in sub-Saharan Africa. This condition is linked to negative birth outcomes, with low birth weight being a common consequence of maternal anemia during pregnancy. Therefore, this study aims to evaluate the effect of maternal anemia on low birth weight in the context of sub-Saharan African countries.MethodsThis study involved searching electronic databases, including PubMed, Embase, Scopus, Cochrane, and Web of Science, as well as reference lists and citation tracking for additional studies. It included cohort, case control, and cross-sectional studies published in English between January 2015 and June 2024. Data were extracted using Covidence and transferred to Microsoft Excel, then to Stata™ Version 17.0 for analysis. Heterogeneity was assessed with forest plots and the Inverse variance (I2) test. Subgroup analysis, sensitivity analysis, and meta-regression were performed to explore sources of heterogeneity, while funnel plot symmetry was evaluated for publication bias. The meta-analytic effect was summarized using pooled odds ratios, 95% confidence intervals, and I2 tests for heterogeneity. This was registered on the PROSPERO under the identification number CRD42024561098.ResultA total of 1213 articles were identified, 71 of which were screened for full-text review, and 21 involving women from sub-Saharan African countries met the inclusion criteria, and were included in this meta-analysis. Women with anemia during pregnancy are at higher risk of giving birth to babies with low birth weight compared to women without anemia (AOR = 3.37; 95% CI: 2.66–4.27; I2: 96.71%).ConclusionMaternal anemia during pregnancy was identified as a significant risk factor for low birth weight. Such that the incidence of low birth weight could possibly be reduced with early identification and proper care of anemia during pregnancy.

  20. At-risk-of-poverty rate among foreign-born citizens in the Nordic countries...

    • statista.com
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). At-risk-of-poverty rate among foreign-born citizens in the Nordic countries 2011-2024 [Dataset]. https://www.statista.com/statistics/1274057/at-risk-poverty-rate-nordics-foreign-born-population/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Sweden
    Description

    Of the Nordic countries, Sweden has had the highest at-risk-of-poverty rate among the foreign-born population since 2013. In 2023, ** percent of Sweden's foreign-born citizens were at risk of poverty. Iceland has the lowest rate, with ** percent in 2019, the last year for which numbers were available for the country. The at-risk-of-poverty rate among Finland's foreign-born citizens decreased by over ** percentage points since the start of the documented period.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the highest birth rate 2024 [Dataset]. https://www.statista.com/statistics/264704/ranking-of-the-20-countries-with-the-highest-birth-rate/
Organization logo

Countries with the highest birth rate 2024

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Worldwide
Description

Niger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest-growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, Africa's population is forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.

Search
Clear search
Close search
Google apps
Main menu