100+ datasets found
  1. H

    USGS Quads (Old Hawaiian Datum)

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +2more
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2024). USGS Quads (Old Hawaiian Datum) [Dataset]. https://opendata.hawaii.gov/gl/dataset/usgs-quads-old-hawaiian-datum
    Explore at:
    html, ogc wms, ogc wfs, kml, zip, csv, geojson, pdf, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 27, 2024
    Dataset provided by
    Hawaii Statewide GIS Program
    Authors
    Office of Planning
    Area covered
    Hawaii
    Description

    [Metadatas] This layer represents the USGS topo quadrangle boundaries published in the Old Hawaiian Datum (OHD), prior to their being recast in the late 1990's. Source: Created by the Office of State Planning in the Old Hawaiian Datum using the latitude/longitude coordinates of the quadrangle boundaries, and the ARC GENERATE command.

    For more information, see the full metadata at https://files.hawaii.gov/dbedt/op/gis/data/usgs_quads_ohd.pdf, or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  2. NOAA VDatum Conversion

    • hub.arcgis.com
    • sea-level-rise-esrioceans.hub.arcgis.com
    Updated Oct 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA VDatum Conversion [Dataset]. https://hub.arcgis.com/maps/a7238c20bfc445be97b3d32a49e5b363
    Explore at:
    Dataset updated
    Oct 4, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    VDatum is designed to vertically transform geospatial data among a variety of tidal, orthometric and ellipsoidal vertical datums - allowing users to convert their data from different horizontal/vertical references into a common system and enabling the fusion of diverse geospatial data in desired reference levels.This particular layer allows you to convert from NAVD 88 to MHHW.Units: metersThese data are a derived product of the NOAA VDatum tool and they extend the tool's Mean Higher High Water (MHHW) tidal datum conversion inland beyond its original extent.VDatum was designed to vertically transform geospatial data among a variety of tidal, orthometric and ellipsoidal vertical datums - allowing users to convert their data from different horizontal/vertical references into a common system and enabling the fusion of diverse geospatial data in desired reference levels (https://vdatum.noaa.gov/). However, VDatum's conversion extent does not completely cover tidally-influenced areas along the coast. For more information on why VDatum does not provide tidal datums inland, see https://vdatum.noaa.gov/docs/faqs.html.Because of the extent limitation and since most inundation mapping activities use a tidal datum as the reference zero (i.e., 1 meter of sea level rise on top of Mean Higher High Water), the NOAA Office for Coastal Management created this dataset for the purpose of extending the MHHW tidal datum beyond the areas covered by VDatum. The data do not replace VDatum, nor do they supersede the valid datum transformations VDatum provides. However, the data are based on VDatum's underlying transformation data and do provide an approximation of MHHW where VDatum does not provide one. In addition, the data are in a GIS-friendly format and represent MHHW in NAVD88, which is the vertical datum by which most topographic data are referenced.Data are in the UTM NAD83 projection. Horizontal resolution varies by VDatum region, but is either 50m or 100m. Data are vertically referenced to NAVD88 meters.More information about the NOAA VDatum transformation and associated tools can be found here.

  3. u

    ArcData Online GIS Data on the Web™ –U.S. State Plane Zones Data Set

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Nov 26, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2002). ArcData Online GIS Data on the Web™ –U.S. State Plane Zones Data Set [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/bc29e224-2a4f-4326-8cdd-bb5b702d1fae/metadata/FGDC-STD-001-1998.html
    Explore at:
    shp(5), kml(5), zip(1), json(5), gml(5), csv(5), xls(5), geojson(5)Available download formats
    Dataset updated
    Nov 26, 2002
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Dec 1988
    Area covered
    United States, West Bounding Coordinate -178.217598362366 East Bounding Coordinate -66.9692710360024 North Bounding Coordinate 71.4062353532711 South Bounding Coordinate 18.921786345087
    Description

    U.S. State Plane Zones (NAD 1983) represents the State Plane Coordinate System (SPCS) Zones for the 1983 North American Datum within United States.

  4. d

    Christmas Island GIS 2013 release

    • datadiscoverystudio.org
    • researchdata.edu.au
    • +1more
    zip
    Updated Jun 30, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walker, K.; Porritt, K. (2016). Christmas Island GIS 2013 release [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/b6f34d32e35b4c14a4f15cc7c10fe0f8/html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 30, 2016
    Authors
    Walker, K.; Porritt, K.
    Area covered
    Description

    The Christmas Island Geographic Information System (CIGIS) is a collection of spatial data, viewing and analysis tools dealing with Christmas Island, Indian Ocean. The data include orthophotography, topographic, mining, cultural and environmental features of the island. This work is part of ongoing service to the Department of Transport and Regional Services.

  5. d

    SF Bay Tidal Datums (2016)

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2024). SF Bay Tidal Datums (2016) [Dataset]. https://catalog.data.gov/dataset/sf-bay-tidal-datums-2016-4c7e5
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    San Francisco Bay Conservation and Development Commission
    Area covered
    San Francisco Bay
    Description

    This study is the first comprehensive publication of tidal datums and extreme tides for San Francisco Bay (Bay) since the United States Army Corps of Engineers (USACE) published itsSan Francisco Bay Tidal Stage vs. Frequency Study in 1984 (USACE 1984). The USACE study was groundbreaking at the time of publication, presenting tidal datums and the “100-year tide” elevation for 53 locations around the Bay. The purpose of this study is to update and expand on the USACE study and to present daily and extreme tidal information for more than 900 locations along the Bay shoreline. Tidal datums, described further in Section 2 , are standard elevations defined by a certain phase of the tide (e.g., mean high tide, mean low tide). A tidal datum is used as a reference to measure and define local water levels, and as such is specific to local hydrodynamic processes and is not easily extended from one area to another without substantiating measurements or analysis. Many industries and activities rely on tidal datums, including shipping and navigation, coastal flood management, coastal development, and wetland restoration. Extreme tidal elevations are estimated for less-frequent extreme tides (e.g., 2-year tides to 500-year tides [tides with a 50.0 percent to 0.2 percent annual chance of occurrence, respectively]). Knowledge of the 100-year tide, or the water elevation with a 1 percent annual chance of occurrence, is critical for shoreline planning, floodplain management, and sea level rise (SLR) adaptation efforts. This study presents detailed daily and extreme tide information for the entirety of the Bay shoreline. This data set will support floodplain management efforts; shoreline vulnerability and risk analyses; shoreline engineering, design, and permitting; ecological studies; and appropriate sea level rise adaptation planning. The goal of this study is to provide data that support a wide-range of planning efforts around the Bay, particularly as communities seek to understand—and begin to adapt to—rising sea levels. You can access the full report at: http://www.adaptingtorisingtides.org/wp-content/uploads/2016/05/20160429.SFBay_Tidal-Datums_and_Extreme_Tides_Study.FINAL_.pdf.

  6. Northern Gulf 1 arc-second NAVD 88 Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • gimi9.com
    • +3more
    netcdf v.4 classic
    Updated Dec 31, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2010). Northern Gulf 1 arc-second NAVD 88 Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/467926f6b4394c33b2f7a77cf98df74d/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Dec 31, 2010
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coastal Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS). Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88), Mean High Water (MHW) or Mean Lower Low Water (MLLW) and horizontal datum of North American Datum of 1983 (NAD 83). Cell size ranges from 1/3 arc-second (~10 meters) to 1 arc-second (~30 meters). The NOAA VDatum DEM Project was funded by the American Recovery and Reinvestment Act (ARRA) of 2009 (http://www.recovery.gov/).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  7. National Geodetic Survey Control Stations

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +2more
    Updated Mar 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2022). National Geodetic Survey Control Stations [Dataset]. https://opendata.hawaii.gov/bs/dataset/national-geodetic-survey-control-stations
    Explore at:
    geojson, arcgis geoservices rest api, csv, kml, ogc wms, zip, pdf, ogc wfs, htmlAvailable download formats
    Dataset updated
    Mar 8, 2022
    Dataset provided by
    U.S. National Geodetic Survey
    Authors
    Office of Planning
    Description
    [Metadata] NGS Geodetic Control Stations: This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Downloaded by the Hawaii Statewide GIS Program from NGS, 1/28/22. Each geodetic control station in this dataset has either a precise Latitude/Longitude used for horizontal control or a precise Orthometric Height used for vertical control, or both. The National Geodetic Survey (NGS) serves as the Nation's depository for geodetic data. The NGS distributes geodetic data worldwide to a variety of users. These geodetic data include the final results of geodetic surveys, software programs to format, compute, verify, and adjust original survey observations or to convert values from one geodetic datum to another, and publications that describe how to obtain and use Geodetic Data products and services.

    Note: This data was projected to the State's standard projection/datum of UTM Zone 4, NAD 83 HARN for use in the State's GIS database, The State posts an un-projected version of the layer on its legacy site (https://planning.hawaii.gov/gis/download-gis-data-expanded/#013), or users can visit the National Geodetic Survey site directly, at https://www.ngs.noaa.gov/cgi-bin/sf_archive.prl.

    For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/ngs_geodetic_ctrl_stns_summary.pdfor contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  8. a

    Stateplane Zones

    • hub.arcgis.com
    • gis.ms.gov
    • +1more
    Updated Sep 2, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    itsgisadmin (2014). Stateplane Zones [Dataset]. https://hub.arcgis.com/datasets/5a5e9fe414b644599e6342bfd7ad6d5a
    Explore at:
    Dataset updated
    Sep 2, 2014
    Dataset authored and provided by
    itsgisadmin
    Area covered
    Description

    U.S. State Plane Zones (NAD 1983) represents the State Plane Coordinate System (SPCS) Zones for the 1983 North American Datum within United States.

    Several State Plane Coordinate System zones are not shown in this dataset, including Puerto Rico, the U.S. Virgin Islands, American Samoa, Guam, and Louisiana's offshore zone.

  9. m

    Tidal Benchmarks North 2050

    • gis.data.mass.gov
    • geodot-massdot.hub.arcgis.com
    • +2more
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts geoDOT (2023). Tidal Benchmarks North 2050 [Dataset]. https://gis.data.mass.gov/datasets/MassDOT::tidal-benchmarks-north-2050
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset authored and provided by
    Massachusetts geoDOT
    Area covered
    Description

    Tidal Datum GIS outputsShapefiles are provided that present the approximate shore-parallel extent of tidal datums across coastal Massachusetts. These shapefiles are provided for 2030, 2050, and 2070 sea level rise scenarios. Individual shapefiles are provided for the north and south model domains for a total of 6 tidal datum shapefiles (2 model domains, 3 sea level rise scenarios). The results presented within these polygons are based upon tidal model simulations conducted using the MC-FRM, with north shapefiles created using the north model domain, and south using the south model domain. Separate polygons (zones) are provided for approximate location where MHW values vary to the nearest 0.1 ft interval. These zones are derived based on the variation in the MHW datum, and as such other datums (MHHW, MTL, MLW, and MLLW) may vary withineach segmented polygon, especially in areas of varied bathymetry. Data are presented in units of feet relative to the NAVD88 datum.These shapefiles contain the following fields: FID, Shape, Hatch, MHHW, MHW, MTL, MLW, and MLLW. The MHHW, MHW, MTL, MLW, and MLLW fields contain float type values representing the tidal datums calculated for each polygon rounded to the nearest tenth of a foot. The Hatch field contains a binary value (0 or 1), with 1 representing zones of uncertainty for tidal datums. These uncertain zones are either dynamic in terms of geomorphology or are restricted by smaller anthropogenic features (culverts, tide gates, etc.) that were not fully resolved in the MC-FRM. Zones with a 1 Hatch value may or may not contain tidal datum information. It is recommended that care be taken when utilizing the tidal benchmark information in these hatched zones and site-specific data observations (tide data) are recommended to verify the values in these areas. If datum information is not available 9999 values are located in the datum fields for that polygon. The FID and Shape fields contain an ID number and shape type contained in each polygon.The shapefiles provided are not intended to represent a spatial extent of the tidal benchmark (i.e., they do not present the geospatial location of water level). Rather, these shapefiles provide the tidal benchmark values that should be applied over each of the geospatial zones.

  10. c

    Data from: SurveyControl

    • data.cityofsalem.net
    • hub.arcgis.com
    Updated Jan 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Salem, Oregon (2018). SurveyControl [Dataset]. https://data.cityofsalem.net/datasets/surveycontrol
    Explore at:
    Dataset updated
    Jan 26, 2018
    Dataset authored and provided by
    City of Salem, Oregon
    Area covered
    Description

    This map represents City of Salem, Oregon, Survey Benchmarks. The Survey Section of the Public Works Department establishes and maintains horizontal and vertical survey control throughout the City for most public and private projects. Vertical datum is NGVD 1929-47. Horizontal datum is NAD 1983-91. The map references detailed GIS data provided by the City of Salem Public Works Department. Contact the City of Salem City Surveyor (503-588-6211) for questions and the most up-to-date information, or gis@cityofsalem.net.

  11. a

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • arcticdata.io
    • search.dataone.org
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://arcticdata.io/catalog/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  12. Monterey, California 1/3 arc-second MHW Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • data.cnra.ca.gov
    • +4more
    netcdf v.4 classic
    Updated Jan 13, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monterey, California 1/3 arc-second MHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/8cbf66e3f14f493c88779a953067ca09/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Jan 13, 2012
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  13. Flood Hazard Areas (DFIRM) - Statewide

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +1more
    Updated Sep 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2021). Flood Hazard Areas (DFIRM) - Statewide [Dataset]. https://opendata.hawaii.gov/dataset/flood-hazard-areas-dfirm-statewide
    Explore at:
    pdf, geojson, zip, ogc wfs, kml, arcgis geoservices rest api, ogc wms, html, csvAvailable download formats
    Dataset updated
    Sep 18, 2021
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Office of Planning
    Description

    [Metadata] Flood Hazard Areas for the State of Hawaii as of May, 2021, downloaded from the FEMA Flood Map Service Center, May 1, 2021. The Statewide GIS Program created the statewide layer by merging all county layers (downloaded on May 1, 2021), as the Statewide layer was not available from the FEMA Map Service Center. For more information, please refer to summary metadata: https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

    For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  14. Hilo, Hawaii 1/3 arc-second MHW Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • s.cnmilf.com
    • +2more
    netcdf v.4 classic
    Updated Aug 12, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2011). Hilo, Hawaii 1/3 arc-second MHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ea41c0a1d8cc41c291a5eeafdf05db0f/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Aug 12, 2011
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  15. VT Water Classifications

    • catalog.data.gov
    • anrgeodata.vermont.gov
    • +8more
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vermont Agency of Natural Resources (2025). VT Water Classifications [Dataset]. https://catalog.data.gov/dataset/vt-water-classifications-6d229
    Explore at:
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    Vermont Agency Of Natural Resourceshttp://www.anr.state.vt.us/
    Description

    The Vermont Water Quality Standards (VTWQS) are rules intended to achieve the goals of the Vermont Surface Water Strategy, as well as the objective of the federal Clean Water Act which is to restore and maintain the chemical, physical, and biological integrity of the Nation's water. The classification of waters is in included in the VTWQS. The classification of all waters has been established by a combination of legislative acts and by classification or reclassification decisions issued by the Water Resources Board or Secretary pursuant to 10 V.S.A. � 1253. Those waters reclassified by the Secretary to Class A(1), A(2), or B(1) for any use shall include all waters within the entire watershed of the reclassified waters unless expressly provided otherwise in the rule. All waters above 2,500 feet altitude, National Geodetic Vertical Datum, are designated Class A(1) for all uses, unless specifically designated Class A(2) for use as a public water source. All waters at or below 2,500 feet altitude, National Geodetic Vertical Datum, are designated Class B(2) for all uses, unless specifically designated as Class A(1), A(2), or B(1) for any use.

  16. C

    Elevation Benchmarks

    • chicago.gov
    • data.cityofchicago.org
    • +2more
    application/rdfxml +5
    Updated Sep 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2011). Elevation Benchmarks [Dataset]. https://www.chicago.gov/city/en/depts/water/dataset/elevation_benchmarks.html
    Explore at:
    xml, csv, json, application/rssxml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Sep 29, 2011
    Dataset authored and provided by
    City of Chicago
    Description

    The following dataset includes "Active Benchmarks," which are provided to facilitate the identification of City-managed standard benchmarks. Standard benchmarks are for public and private use in establishing a point in space. Note: The benchmarks are referenced to the Chicago City Datum = 0.00, (CCD = 579.88 feet above mean tide New York). The City of Chicago Department of Water Management’s (DWM) Topographic Benchmark is the source of the benchmark information contained in this online database. The information contained in the index card system was compiled by scanning the original cards, then transcribing some of this information to prepare a table and map. Over time, the DWM will contract services to field verify the data and update the index card system and this online database.This dataset was last updated September 2011. Coordinates are estimated. To view map, go to https://data.cityofchicago.org/Buildings/Elevation-Benchmarks-Map/kmt9-pg57 or for PDF map, go to http://cityofchicago.org/content/dam/city/depts/water/supp_info/Benchmarks/BMMap.pdf. Please read the Terms of Use: http://www.cityofchicago.org/city/en/narr/foia/data_disclaimer.html.

  17. Data from: Digital Surface Model (DSM) from 2005 LiDAR for the Green Lakes...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Anderson (2015). Digital Surface Model (DSM) from 2005 LiDAR for the Green Lakes Valley, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F735%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Robert Anderson
    Time period covered
    Sep 29, 2005
    Area covered
    Description

    This 1m Digital Surface Model (DSM) is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  18. Data from: Digital Surface Model (DSM) shaded relief from 2005 LiDAR for the...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Anderson (2019). Digital Surface Model (DSM) shaded relief from 2005 LiDAR for the Green Lakes Valley, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F736%2F2
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Robert Anderson
    Time period covered
    Sep 29, 2005
    Area covered
    Description

    This 1m Digital Surface Model (DSM) shaded relief is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM shaded relief has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. This shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM dataset is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  19. d

    Streamflow data availability in Europe: a detailed dataset of interpolated...

    • b2find.dkrz.de
    Updated Mar 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Streamflow data availability in Europe: a detailed dataset of interpolated flow-duration curves - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/2e792470-eb4d-5538-9397-748279b7e8e6
    Explore at:
    Dataset updated
    Mar 6, 2022
    Area covered
    Europe
    Description

    The dataset consists of a GIS vector layer of the contours of 24,148 elementary catchments in Europe and the associated representation of the streamflow regime in terms of empirical flow–duration curves (FDCs). FDCs are estimated by means of the geostatistical procedure termed total negative deviation top-kriging (TNDTK), starting from the empirical FDCs available for 2484 discharge measurement stations across Europe. Together with the estimated FDCs' percentiles, for each catchment, indicators of the accuracy and reliability of the performed large-scale geostatistical prediction are provided. The file is stored using the ESRI Shapefile format in the ETRS89 (European Terrestrial Reference System 1989) – LAEA (Lambert Azimuthal Equal Area) datum and geographic coordinate system. The compressed .zip folder contains a GIS vector layer of the contours of 24,148 elementary catchments over Europe, stored using the ESRI Shapefile format in the ETRS89 (European Terrestrial Reference System 1989) – LAEA (Lambert Azimuthal Equal Area) datum and geographic coordinate system. For each elementary catchment, the following information is provided:• HydroID: identification code;• NextDownID: ID code associated with the elementary catchment located immediately downstream of the selected one (it is set to -1 if no elementary catchment is present downstream within the GIS layer);• Area_EC: area of the elementary catchment (km²);• Area_AC: drainage area of the whole catchment (km²; for headwater catchments, Area_AC=Area_EC);• Gauged: distinguishes between gauged and ungauged nodes: “yes” for gauged catchments (i.e. 2484 catchments with high-quality data); “no” for ungauged catchments (i.e. 21,664 prediction nodes);• Var_est: prediction variance for each elementary catchment (-);• TND: empirical value of the total negative deviation (TND; see e.g. Pugliese et al., 2014) (-).• MAF: Mean Annual Flow (m³ s⁻¹) (if the field “Gauged” is equal to “yes”, then the values are empirical, while they are predicted otherwise).• from D9Q1 to D9Q997: FDCs' streamflow percentiles (m³ s⁻¹); 15 values from 1st to 99.7th (if the field “Gauged” is equal to “yes”, then the values are empirical, while they are predicted otherwise);• LNSE: logarithmic Nash and Sutcliffe Efficiency values obtained in leave-one-out cross-validation (LOOCV) for gauged catchments; for ungauged catchments, the distinction is made between catchments having prediction variance lower (“yes”) and higher than KV* (“no”). No values are reported for those gauged catchments where the presence of measured percentiles of daily flows equal to zero makes the evaluation of LNSE not possible;• LakeRatio: ratio between area covered with bodies of water and total area for each elementary catchment (-);

  20. Data from: Digital Terrain Model (DTM) from 2005 LiDAR for the Green Lakes...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Anderson (2019). Digital Terrain Model (DTM) from 2005 LiDAR for the Green Lakes Valley, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F733%2F2
    Explore at:
    Dataset updated
    Apr 4, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Robert Anderson
    Time period covered
    Sep 29, 2005
    Area covered
    Description

    This 1m Digital Terrain Model (DTM) is derived from bare-ground Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. This dataset is better suited for derived layers such as slope angle, aspect, and contours. The DTM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DTM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DTM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Surface Model (DSM), is a first-stop elevation layer. A processing report and readme file are included with this data release. The DTM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office of Planning (2024). USGS Quads (Old Hawaiian Datum) [Dataset]. https://opendata.hawaii.gov/gl/dataset/usgs-quads-old-hawaiian-datum

USGS Quads (Old Hawaiian Datum)

Explore at:
html, ogc wms, ogc wfs, kml, zip, csv, geojson, pdf, arcgis geoservices rest apiAvailable download formats
Dataset updated
Feb 27, 2024
Dataset provided by
Hawaii Statewide GIS Program
Authors
Office of Planning
Area covered
Hawaii
Description

[Metadatas] This layer represents the USGS topo quadrangle boundaries published in the Old Hawaiian Datum (OHD), prior to their being recast in the late 1990's. Source: Created by the Office of State Planning in the Old Hawaiian Datum using the latitude/longitude coordinates of the quadrangle boundaries, and the ARC GENERATE command.

For more information, see the full metadata at https://files.hawaii.gov/dbedt/op/gis/data/usgs_quads_ohd.pdf, or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

Search
Clear search
Close search
Google apps
Main menu