1 dataset found
  1. g

    Predictive nano-QSAR modeling of the cytotoxicity using epithelial cells...

    • nanocommons.github.io
    • data.niaid.nih.gov
    • +1more
    Updated Aug 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NanoSolveIT (2023). Predictive nano-QSAR modeling of the cytotoxicity using epithelial cells obtained from Chinese hamster ovary (CHO-K1 cell line) for hybrid TiO2-based nanomaterials [Dataset]. http://doi.org/10.5281/zenodo.8297048
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    NanoSolveIT
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Results obtained from developed model indicated that the cytotoxicity of hybrid TiO2-based nanomaterials is related to additive electronegativity (χmix) of studied nanomaterials that are indirectly related to the electron generation and ROS formation. ROS production is the most common toxicity cause as discussed in the literature in the case of nanoparticles. The high efficiency of surface modified TiO2-based semiconductors can be attributed to the involvement of TiO2 band gap (Eg) excitation and absence of noble metals at the TiO2 surface. It can be expected that noble metals (i.e. Pd/Pt) may trap holes (h+), at the same time photo-generated electrons can be then transferred from the valence band to the conduction band of TiO2 and to its surface where redox processes were initiated. Thus, observed reduction of the electron–hole pair recombination influences the reactive oxygen species (ROS) formation and the photocatalytic redox process initiation. Since the electronegativity was positively correlated with the cytotoxicity it can be expected that some ions are released from the TiO2 surface easier than others.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NanoSolveIT (2023). Predictive nano-QSAR modeling of the cytotoxicity using epithelial cells obtained from Chinese hamster ovary (CHO-K1 cell line) for hybrid TiO2-based nanomaterials [Dataset]. http://doi.org/10.5281/zenodo.8297048

Predictive nano-QSAR modeling of the cytotoxicity using epithelial cells obtained from Chinese hamster ovary (CHO-K1 cell line) for hybrid TiO2-based nanomaterials

Explore at:
490 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 29, 2023
Dataset authored and provided by
NanoSolveIT
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Results obtained from developed model indicated that the cytotoxicity of hybrid TiO2-based nanomaterials is related to additive electronegativity (χmix) of studied nanomaterials that are indirectly related to the electron generation and ROS formation. ROS production is the most common toxicity cause as discussed in the literature in the case of nanoparticles. The high efficiency of surface modified TiO2-based semiconductors can be attributed to the involvement of TiO2 band gap (Eg) excitation and absence of noble metals at the TiO2 surface. It can be expected that noble metals (i.e. Pd/Pt) may trap holes (h+), at the same time photo-generated electrons can be then transferred from the valence band to the conduction band of TiO2 and to its surface where redox processes were initiated. Thus, observed reduction of the electron–hole pair recombination influences the reactive oxygen species (ROS) formation and the photocatalytic redox process initiation. Since the electronegativity was positively correlated with the cytotoxicity it can be expected that some ions are released from the TiO2 surface easier than others.

Search
Clear search
Close search
Google apps
Main menu