100+ datasets found
  1. Explore data formats and ingestion methods

    • kaggle.com
    zip
    Updated Feb 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel Preda (2021). Explore data formats and ingestion methods [Dataset]. https://www.kaggle.com/gpreda/iris-dataset
    Explore at:
    zip(31084 bytes)Available download formats
    Dataset updated
    Feb 12, 2021
    Authors
    Gabriel Preda
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Why this Dataset

    This dataset brings to you Iris Dataset in several data formats (see more details in the next sections).

    You can use it to test the ingestion of data in all these formats using Python or R libraries. We also prepared Python Jupyter Notebook and R Markdown report that input all these formats:

    Iris Dataset

    Iris Dataset was created by R. A. Fisher and donated by Michael Marshall.

    Repository on UCI site: https://archive.ics.uci.edu/ml/datasets/iris

    Data Source: https://archive.ics.uci.edu/ml/machine-learning-databases/iris/

    The file downloaded is iris.data and is formatted as a comma delimited file.

    This small data collection was created to help you test your skills with ingesting various data formats.

    Content

    This file was processed to convert the data in the following formats: * csv - comma separated values format * tsv - tab separated values format * parquet - parquet format
    * feather - feather format * parquet.gzip - compressed parquet format * h5 - hdf5 format * pickle - Python binary object file - pickle format * xslx - Excel format
    * npy - Numpy (Python library) binary format * npz - Numpy (Python library) binary compressed format * rds - Rds (R specific data format) binary format

    Acknowledgements

    I would like to acknowledge the work of the creator of the dataset - R. A. Fisher and of the donor - Michael Marshall.

    Inspiration

    Use these data formats to test your skills in ingesting data in various formats.

  2. u

    SMART R-1 Radar Data, DORADE format

    • data.ucar.edu
    netcdf
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Conrad L. Ziegler; Gordon D. Carrie; Michael I. Biggerstaff (2025). SMART R-1 Radar Data, DORADE format [Dataset]. http://doi.org/10.5065/D6C53J0T
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Conrad L. Ziegler; Gordon D. Carrie; Michael I. Biggerstaff
    Time period covered
    Jun 2, 2015 - Jul 9, 2015
    Area covered
    Description

    This dataset contains SMART R-1 Radar data collected during the Plains Elevated Convection at Night (PECAN) project from 2 June 2015 to 9 July 2015. The data are in DORADE format and are available as daily tar files. Each tar file contains an operator log and documentation file. An example readme file is linked below. The original data were in SIGMET format; manufacturer info is available by following the link to SIGMET manuals below.

  3. R object containing study data in Phyloseq format

    • figshare.com
    application/gzip
    Updated Apr 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Cox (2023). R object containing study data in Phyloseq format [Dataset]. http://doi.org/10.6084/m9.figshare.22702000.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Apr 26, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Michael Cox
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R object containing OTU tables and metadata from throat swabs of children in Ecuador.

  4. Friends - R Package Dataset

    • kaggle.com
    zip
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucas Yukio Imafuko (2024). Friends - R Package Dataset [Dataset]. https://www.kaggle.com/datasets/lucasyukioimafuko/friends-r-package-dataset
    Explore at:
    zip(2018791 bytes)Available download formats
    Dataset updated
    Nov 11, 2024
    Authors
    Lucas Yukio Imafuko
    Description

    The whole data and source can be found at https://emilhvitfeldt.github.io/friends/

    "The goal of friends to provide the complete script transcription of the Friends sitcom. The data originates from the Character Mining repository which includes references to scientific explorations using this data. This package simply provides the data in tibble format instead of json files."

    Content

    • friends.csv - Contains the scenes and lines for each character, including season and episodes.
    • friends_emotions.csv - Contains sentiments for each scene - for the first four seasons only.
    • friends_info.csv - Contains information regarding each episode, such as imdb_rating, views, episode title and directors.

    Uses

    • Text mining, sentiment analysis and word statistics.
    • Data visualizations.
  5. d

    Census block internal point coordinates and weights formatted specifically...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OP,ORPM (2023). Census block internal point coordinates and weights formatted specifically for use in R code of the Environmental Justice Analysis Multisite (EJAM) tool, USA, 2020, EPA, EPA AO OP ORPM [Dataset]. https://catalog.data.gov/dataset/census-block-internal-point-coordinates-and-weights-formatted-specifically-for-use-in-r-co
    Explore at:
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    OP,ORPM
    Description

    This is Census 2020 block data specifically formatted for use by the Environmental Protection Agency (EPA) in-development Environmental Justice Analysis Multisite (EJAM) tool, which uses R code to find which block centroids are within X miles of each specified point (e.g., regulated facility), and to find those distances. The datasets have latitude and longitude of each block's internal point, as provided by Census Bureau, and the FIPS code of the block and its parent block group. The datasets also include a weight for each block, representing this block's Census 2020 population count as a fraction of the count for the parent block group overall, for use in estimating how much of a given block group is within X miles of a specified point or inside a polygon of interest. The datasets also have an effective radius of each block, which is what the radius would be in miles if the block covered the same area in square miles but were circular. The datasets also have coordinates in units that facilitate building a quadtree index of locations. They are in R data.table format, saved as .rda or .arrow files to be read by R code.

  6. Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  7. Film Circulation dataset

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Skadi Loist; Skadi Loist; Evgenia (Zhenya) Samoilova; Evgenia (Zhenya) Samoilova (2024). Film Circulation dataset [Dataset]. http://doi.org/10.5281/zenodo.7887672
    Explore at:
    csv, png, binAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Skadi Loist; Skadi Loist; Evgenia (Zhenya) Samoilova; Evgenia (Zhenya) Samoilova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”

    A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org

    Please cite this when using the dataset.


    Detailed description of the dataset:

    1 Film Dataset: Festival Programs

    The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.

    The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.

    The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.


    2 Survey Dataset

    The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.

    The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.

    The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.


    3 IMDb & Scripts

    The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.

    The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.

    The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.

    The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.

    The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.

    The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.

    The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.

    The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.

    The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.

    The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.

    The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.

    The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.

    The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.

    The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.

    The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.

    The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.

    The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.

    The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.

    The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.


    4 Festival Library Dataset

    The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.

    The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories,

  8. E

    Code for dealing with data format CARIBIC_NAmes_v02

    • edmond.mpdl.mpg.de
    • edmond.mpg.de
    txt, type/x-r-syntax
    Updated Mar 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walter, David; Walter, David (2022). Code for dealing with data format CARIBIC_NAmes_v02 [Dataset]. http://doi.org/10.17617/3.WDVSU7
    Explore at:
    type/x-r-syntax(75684), txt(76894), txt(128015), txt(132902)Available download formats
    Dataset updated
    Mar 3, 2022
    Dataset provided by
    Edmond
    Authors
    Walter, David; Walter, David
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    R- and Igor-Code for reading and writing data files of format "CARIBIC_NAmes_v02". See "https://doi.org/10.17617/3.10" for the file format description. That file format has been used predominantly within projects CARIBIC and ATTO, for example in "https://doi.org/10.17617/3.3r". The code files of this dataset can be used with software R ("r-project.org") or Igor Pro ("https://www.wavemetrics.com/").

  9. f

    Data from: [Dataset:] Data from Tree Censuses and Inventories in Panama

    • smithsonian.figshare.com
    zip
    Updated Apr 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Condit; Rolando Pẽrez; Salomõn Aguilar; Suzanne Lao (2024). [Dataset:] Data from Tree Censuses and Inventories in Panama [Dataset]. http://doi.org/10.5479/data.stri.2016.0622
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Smithsonian Tropical Research Institute
    Authors
    Richard Condit; Rolando Pẽrez; Salomõn Aguilar; Suzanne Lao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Panama
    Description

    Abstract: These are results from a network of 65 tree census plots in Panama. At each, every individual stem in a rectangular area of specified size is given a unique number and identified to species, then stem diameter measured in one or more censuses. Data from these numerous plots and inventories were collected following the same methods as, and species identity harmonized with, the 50-ha long-term tree census at Barro Colorado Island. Precise location of every site, elevation, and estimated rainfall (for many sites) are also included. These data were gathered over many years, starting in 1994 and continuing to the present, by principal investigators R. Condit, R. Perez, S. Lao, and S. Aguilar. Funding has been provided by many organizations.Description:marenaRecent.full.Rdata5Jan2013.zip: A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format, designed for data analysis. This and all other tables labelled 'full' have one record per individual tree found in that census. Detailed documentations of the 'full' tables is given in RoutputFull.pdf (see component 10 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. These are the best data to use if only a single plot census is needed. marena2cns.full.Rdata5Jan2013.zip: R Analytical Tables of the style 'full' for 44 plots with two censuses: 'marena2cns.full1.rdata' for the first census and 'marena2cns.full2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.full (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed. marena3cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for nine plots with three censuses: 'marena3cns.full1.rdata' for the first census through 'marena2cns.full3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.full (component 2): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed. marena4cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for six plots with four censuses: 'marena4cns.full1.rdata' for the first census through 'marena4cns.full4.rdata' for the fourth census. These six plots are a subset of the nine found in marena3cns.full (component 3): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed. marenaRecent.stem.Rdata5Jan2013.zip. A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format. These are designed for data analysis. This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. The table has one record per individual stem, necessary because some individual trees have more than one stem. Detailed documentations of these tables is given in RoutputFull.pdf (see component 11 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). These are the best data to use if only a single plot census is needed, and individual stems are desired. marena2cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for 44 plots with two censuses: 'marena2cns.stem1.rdata' for the first census and 'marena3cns.stem2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.stem (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed, and individual stems are desired. marena3cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for nine plots with three censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.stem (component 6): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed, and individual stems are desired. marena4cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for six plots with four censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These six plots are a subset of the nine found in marena3cns.stem (component 7): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed, and individual stems are desired. bci.spptable.rdata. A list of the 1414 species found across all tree plots and inventories in Panama, in R format. The column 'sp' in this table is a code identifying the species in the full census tables (marena.full and marena.stem, components 1-4 and 5-8 above). RoutputFull.pdf: Detailed documentation of the 'full' tables in Rdata format (components 1-4 above). RoutputStem.pdf: Detailed documentation of the 'stem' tables in Rdata format (component 5-8 above). PanamaPlot.txt: Locations of all tree plots and inventories in Panama.

  10. r

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • researchdata.edu.au
    • bridges.monash.edu
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg (2019). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Publication


    Primahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387

    Description of R codes and data files in the repository

    This repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).

    The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).

    These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt.

    Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.

    Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).

    The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

  11. u

    SMART R-2 Radar Data, DORADE format

    • ckanprod.data-commons.k8s.ucar.edu
    • data.ucar.edu
    netcdf
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Conrad L. Ziegler; Gordon D. Carrie; Michael I. Biggerstaff (2025). SMART R-2 Radar Data, DORADE format [Dataset]. http://doi.org/10.5065/D67D2S83
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Conrad L. Ziegler; Gordon D. Carrie; Michael I. Biggerstaff
    Time period covered
    Jun 2, 2015 - Jul 16, 2015
    Area covered
    Description

    This dataset contains SMART R-2 Radar data collected during the Plains Elevated Convection at Night (PECAN) project from 2 June 2015 to 16 July 2015. The data are in DORADE format and are available as daily tar files. Each tar file contains an operator log and documentation file. An example readme file is linked below. The original data were in SIGMET format; manufacturer info is available by following the link to SIGMET manuals below.

  12. f

    Additional file 9 of crossnma: An R package to synthesize cross-design...

    • datasetcatalog.nlm.nih.gov
    • springernature.figshare.com
    Updated Aug 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamza, Tasnim; Schwarzer, Guido; Salanti, Georgia (2024). Additional file 9 of crossnma: An R package to synthesize cross-design evidence and cross-format data using network meta-analysis and network meta-regression [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001448922
    Explore at:
    Dataset updated
    Aug 15, 2024
    Authors
    Hamza, Tasnim; Schwarzer, Guido; Salanti, Georgia
    Description

    Additional file 9.

  13. Meta data and supporting documentation

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Meta data and supporting documentation [Dataset]. https://catalog.data.gov/dataset/meta-data-and-supporting-documentation
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    We include a description of the data sets in the meta-data as well as sample code and results from a simulated data set. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The R code is available on line here: https://github.com/warrenjl/SpGPCW. Format: Abstract The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publicly available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. File format: R workspace file. Metadata (including data dictionary) • y: Vector of binary responses (1: preterm birth, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate). This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  14. Cyclistic

    • kaggle.com
    zip
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salam Ibrahim (2022). Cyclistic [Dataset]. https://www.kaggle.com/datasets/salamibrahim/cyclistic
    Explore at:
    zip(209748131 bytes)Available download formats
    Dataset updated
    May 12, 2022
    Authors
    Salam Ibrahim
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    **Introduction ** This case study will be based on Cyclistic, a bike sharing company in Chicago. I will perform tasks of a junior data analyst to answer business questions. I will do this by following a process that includes the following phases: ask, prepare, process, analyze, share and act.

    Background Cyclistic is a bike sharing company that operates 5828 bikes within 692 docking stations. The company has been around since 2016 and separates itself from the competition due to the fact that they offer a variety of bike services including assistive options. Lily Moreno is the director of the marketing team and will be the person to receive these insights from this analysis.

    Case Study and business task Lily Morenos perspective on how to generate more income by marketing Cyclistics services correctly includes converting casual riders (one day passes and/or pay per ride customers) into annual riders with a membership. Annual riders are more profitable than casual riders according to the finance analysts. She would rather see a campaign targeting casual riders into annual riders, instead of launching campaigns targeting new costumers. So her strategy as the manager of the marketing team is simply to maximize the amount of annual riders by converting casual riders.

    In order to make a data driven decision, Moreno needs the following insights: - A better understanding of how casual riders and annual riders differ - Why would a casual rider become an annual one - How digital media can affect the marketing tactics

    Moreno has directed me to the first question - how do casual riders and annual riders differ?

    Stakeholders Lily Moreno, manager of the marketing team Cyclistic Marketing team Executive team

    Data sources and organization Data used in this report is made available and is licensed by Motivate International Inc. Personal data is hidden to protect personal information. Data used is from the past 12 months (01/04/2021 – 31/03/2022) of bike share dataset.

    By merging all 12 monthly bike share data provided, an extensive amount of data with 5,400,000 rows were returned and included in this analysis.

    Data security and limitations: Personal information is secured and hidden to prevent unlawful use. Original files are backed up in folders and subfolders.

    Tools and documentation of cleaning process The tools used for data verification and data cleaning are Microsoft Excel and R programming. The original files made accessible by Motivate International Inc. are backed up in their original format and in separate files.

    Microsoft Excel is used to generally look through the dataset and get a overview of the content. I performed simple checks of the data by filtering, sorting, formatting and standardizing the data to make it easily mergeable.. In Excel, I also changed data type to have the right format, removed unnecessary data if its incomplete or incorrect, created new columns to subtract and reformat existing columns and deleting empty cells. These tasks are easily done in spreadsheets and provides an initial cleaning process of the data.

    R will be used to perform queries of bigger datasets such as this one. R will also be used to create visualizations to answer the question at hand.

    Limitations Microsoft Excel has a limitation of 1,048,576 rows while the data of the 12 months combined are over 5,500,000 rows. When combining the 12 months of data into one table/sheet, Excel is no longer efficient and I switched over to R programming.

  15. Data from: A dataset to model Levantine landcover and land-use change...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Kempf; Michael Kempf (2023). A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.10396148
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael Kempf; Michael Kempf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 16, 2023
    Area covered
    Levant
    Description

    Overview

    This dataset is the repository for the following paper submitted to Data in Brief:

    Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).

    The Data in Brief article contains the supplement information and is the related data paper to:

    Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).

    Description/abstract

    The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.

    Folder structure

    The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:

    “code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.

    “MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.

    “mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).

    “yield_productivity” contains .csv files of yield information for all countries listed above.

    “population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).

    “GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.

    “built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.

    Code structure

    1_MODIS_NDVI_hdf_file_extraction.R


    This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.


    2_MERGE_MODIS_tiles.R


    In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").


    3_CROP_MODIS_merged_tiles.R


    Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
    The repository provides the already clipped and merged NDVI datasets.


    4_TREND_analysis_NDVI.R


    Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
    To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.


    5_BUILT_UP_change_raster.R


    Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.


    6_POPULATION_numbers_plot.R


    For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.


    7_YIELD_plot.R


    In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.


    8_GLDAS_read_extract_trend


    The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
    Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
    From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
    From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.

  16. Data_Sheet_1_NeuroDecodeR: a package for neural decoding in R.docx

    • frontiersin.figshare.com
    docx
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethan M. Meyers (2024). Data_Sheet_1_NeuroDecodeR: a package for neural decoding in R.docx [Dataset]. http://doi.org/10.3389/fninf.2023.1275903.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Ethan M. Meyers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Neural decoding is a powerful method to analyze neural activity. However, the code needed to run a decoding analysis can be complex, which can present a barrier to using the method. In this paper we introduce a package that makes it easy to perform decoding analyses in the R programing language. We describe how the package is designed in a modular fashion which allows researchers to easily implement a range of different analyses. We also discuss how to format data to be able to use the package, and we give two examples of how to use the package to analyze real data. We believe that this package, combined with the rich data analysis ecosystem in R, will make it significantly easier for researchers to create reproducible decoding analyses, which should help increase the pace of neuroscience discoveries.

  17. d

    Streamflow data for sites in the Heart River Basin, North Dakota, 1970-2020

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Streamflow data for sites in the Heart River Basin, North Dakota, 1970-2020 [Dataset]. https://catalog.data.gov/dataset/streamflow-data-for-sites-in-the-heart-river-basin-north-dakota-1970-2020
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    North Dakota, Heart River
    Description

    This child page contains eight csv files, site_flow, which contain daily streamflow values for each site. Each file includes a station identifier, date of observation, measured value of streamflow and qualifier code for the measured value. The format of the csv file (date format and column headings) is designed to meet the specific requirements of file format for R-QWTREND. If csv files are opened directly in excel, the format of the data can change. To ensure the data are in the proper format for R-QWTREND, files should be opened in a text editor. The "site" in site_flow can be cross-referenced to the main report by downloading the zipped folder HRtrend folder from child page, "Scripts to run R-QWTREND models and produce results" and navigating to the file allsiteinfo.table.csv.

  18. d

    DUBATHG - ArcInfo GRID format of the 2001 multibeam echo-sounder data...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). DUBATHG - ArcInfo GRID format of the 2001 multibeam echo-sounder data collected in the Duwamish River Delta, Puget Sound (Seattle), Washington from Field Activity: R-1-01-WA [Dataset]. https://catalog.data.gov/dataset/dubathg-arcinfo-grid-format-of-the-2001-multibeam-echo-sounder-data-collected-in-the-duwam
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Puget Sound, Duwamish River, Seattle, Washington
    Description

    ArcInfo GRID format bathymetry data generated from the 2001 multibeam sonar survey the major deltas of southern Puget Sound, WA., including Nisqually, Puyallup, and Duwamish Deltas. This is metadata for the Duwamish Delta multibeam bathymetry data.

  19. d

    Water-quality data for nitrate plus nitrite, total nitrogen, and total...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Water-quality data for nitrate plus nitrite, total nitrogen, and total phosphorus for sites in Red River of the North basin, 1970-2017 [Dataset]. https://catalog.data.gov/dataset/water-quality-data-for-nitrate-plus-nitrite-total-nitrogen-and-total-phosphorus-for-s-1970
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Red River
    Description

    This child page contains 34 csv files, site_qw_nuts, which contain observations of nitrate plus nitrite as nitrogen (npnN), total nitrogen (TN), total phosphorus (TP) for each site . Each file includes date of observation, measured value of water-quality constituent, remark code for the measured value, and site name. Availability of observations of water-quality constituents depended upon collecting agency and varied by site and constituent. Not all sites had observations for all constituents. The format of the csv file (date format and column headings) is designed to meet the specific requirements of file format for R-QWTREND. If csv files are opened directly in excel, the format of the data can change. To ensure the data are in the proper format for R-QWTREND, files should be opened in a text editor. The "site" in site_qw_nuts can be cross-referenced to the main report by downloading the zipped folder RRTrend from child page, "Scripts to run R-QWTREND models and produce results" and navigating to the file siteinfo_appendix.txt.

  20. f

    Supplement 1. R and WinBUGS code for fitting the model of species occurrence...

    • figshare.com
    • wiley.figshare.com
    html
    Updated Aug 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert M. Dorazio; J. Andrew Royle; Bo Söderström; Anders Glimskär (2016). Supplement 1. R and WinBUGS code for fitting the model of species occurrence and detection and example data sets. [Dataset]. http://doi.org/10.6084/m9.figshare.3526013.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 5, 2016
    Dataset provided by
    Wiley
    Authors
    Robert M. Dorazio; J. Andrew Royle; Bo Söderström; Anders Glimskär
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List breedingBirdData.txt butterflyData.txt ExampleSession.txt MultiSpeciesSiteOcc.R MultiSpeciesSiteOccModel.txt CumNumSpeciesPresent.R

    Description “breedingBirdData.txt” is an example data set in ASCII comma-delimited format. Each row corresponds to data for a single species observed in the avian survey. The 50 columns correspond to 50 sample locations. “butterflyData.txt” is an example data set in ASCII comma-delimited format. Each row corresponds to data for a single species observed in the butterfly survey. The 20 columns correspond to 20 sample locations. “ExampleSession.txt” illustrates an example session in R where the butterfly data are read into memory and then analyzed using the R and WinBUGS code. “MultiSpeciesSiteOcc.R” defines an R function for fitting the model of species occurrence and detection to data. This function specifies a Gibbs sampler wherein 55000 random draws are computed for each of 4 different Markov chains. These computations may require nontrivial execution times. For example, analysis of the avian data required about 4 hours using a computer equipped with a 3.20 GHz Pentium 4 processor. Analysis of the butterfly data required about 1.5 hours. “MultiSpeciesSiteOccModel.txt” contains WinBUGS code for specifying the model of species occurrence and detection. “CumNumSpeciesPresent.R” defines an R function for computing a sample of the posterior-predictive distribution of a species-accumulation curve whose abscissa ranges from 1 to nsites sites.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gabriel Preda (2021). Explore data formats and ingestion methods [Dataset]. https://www.kaggle.com/gpreda/iris-dataset
Organization logo

Explore data formats and ingestion methods

Learn how to ingest various data formats in R & Python using Iris Dataset

Explore at:
zip(31084 bytes)Available download formats
Dataset updated
Feb 12, 2021
Authors
Gabriel Preda
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Why this Dataset

This dataset brings to you Iris Dataset in several data formats (see more details in the next sections).

You can use it to test the ingestion of data in all these formats using Python or R libraries. We also prepared Python Jupyter Notebook and R Markdown report that input all these formats:

Iris Dataset

Iris Dataset was created by R. A. Fisher and donated by Michael Marshall.

Repository on UCI site: https://archive.ics.uci.edu/ml/datasets/iris

Data Source: https://archive.ics.uci.edu/ml/machine-learning-databases/iris/

The file downloaded is iris.data and is formatted as a comma delimited file.

This small data collection was created to help you test your skills with ingesting various data formats.

Content

This file was processed to convert the data in the following formats: * csv - comma separated values format * tsv - tab separated values format * parquet - parquet format
* feather - feather format * parquet.gzip - compressed parquet format * h5 - hdf5 format * pickle - Python binary object file - pickle format * xslx - Excel format
* npy - Numpy (Python library) binary format * npz - Numpy (Python library) binary compressed format * rds - Rds (R specific data format) binary format

Acknowledgements

I would like to acknowledge the work of the creator of the dataset - R. A. Fisher and of the donor - Michael Marshall.

Inspiration

Use these data formats to test your skills in ingesting data in various formats.

Search
Clear search
Close search
Google apps
Main menu