Facebook
TwitterThe U.S. Census defines Asian Americans as individuals having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent (U.S. Office of Management and Budget, 1997). As a broad racial category, Asian Americans are the fastest-growing minority group in the United States (U.S. Census Bureau, 2012). The growth rate of 42.9% in Asian Americans between 2000 and 2010 is phenomenal given that the corresponding figure for the U.S. total population is only 9.3% (see Figure 1). Currently, Asian Americans make up 5.6% of the total U.S. population and are projected to reach 10% by 2050. It is particularly notable that Asians have recently overtaken Hispanics as the largest group of new immigrants to the U.S. (Pew Research Center, 2015). The rapid growth rate and unique challenges as a new immigrant group call for a better understanding of the social and health needs of the Asian American population.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38489/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38489/terms
The East Asian Social Survey (EASS) is a biennial social survey project that serves as a cross-national network of the following four General Social Survey type surveys in East Asia: the Chinese General Social Survey (CGSS), the Japanese General Social Survey (JGSS), the Korean General Social Survey (KGSS), and the Taiwan Social Change Survey (TSCS), and comparatively examines diverse aspects of social life in these regions. Since its 1st module survey in 2006, EASS produces and disseminates its module survey datasets and this is the harmonized data for the 7th module survey, called 'Culture and Globalization in East Asia'. Survey information in this module is the same topic as the second module of the EASS 2008, and it focuses on cultural norms and expectations of respondents. Respondents were asked about their exposure to East Asian cultural activities and rituals as well as opinion on family responsibilities and roles. Other topics include sources of international news and discussion frequency, countries or regions traveled, as well as where acquaintances live. Additionally, respondents were asked how accepting they would be of people from other countries as coworkers, neighbors, and in marriage. Information was collected regarding foreign practices, whether the respondent was working for a foreign capital company, and the economic environment. Respondents were also asked to assess their own proficiency when reading, speaking, and writing in English. Demographic information specific to the respondent and their spouse includes age, sex, marital status, education, employment status and hours worked, occupation, earnings and income, religion, class, size of community, and region.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 1 cities in the Denver County, CO by Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 24 cities in the Pinellas County, FL by Multi-Racial Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
This dataset provides a comprehensive look at population and migration trends in five South Asian countries: Afghanistan, Bangladesh, India, Pakistan, and Sri Lanka, covering the years 1960 to 2023. The data is sourced directly from the World Bank API and contains detailed statistics on total population and net migration for each year.
This dataset is ideal for:
Columns: - Country: Name of the country. - Year: Year of the recorded data. - Total Population: The total population of the country. - Net Migration: Net migration balance (positive for immigration surplus, negative for emigration surplus).
Key Insights: - Afghanistan: Significant migration shifts due to conflicts and crises. - India: Continuous population growth with varying migration trends. - Bangladesh: A history of large emigration and its impact on demographics. - Pakistan: Migration surpluses in some years and large outflows in others. - Sri Lanka: Gradual population growth and consistent emigration patterns.
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
The following data set is information obtained about counties in the United States from 2010 through 2019 through the United States Census Bureau. Information described in the data includes the age distributions, the education levels, employment statistics, ethnicity percents, houseold information, income, and other miscellneous statistics. (Values are denoted as -1, if the data is not available)
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| County | String | County name | "Abbeville County" |
| State | String | State name | "SC" |
| Age.Percent 65 and Older | Float | Estimated percentage of population whose ages are equal or greater than 65 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 22.4 |
| Age.Percent Under 18 Years | Float | Estimated percentage of population whose ages are under 18 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 19.8 |
| Age.Percent Under 5 Years | Float | Estimated percentage of population whose ages are under 5 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 4.7 |
| Education.Bachelor's Degree or Higher | Float | Percentage for the people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019. | 15.6 |
| Education.High School or Higher | Float | Percentage of people whose highest degree was a high school diploma or its equivalent people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019 | 81.7 |
| Employment.Nonemployer Establishments | Integer | An establishment is a single physical location at which business is conducted or where services or industrial operations are performed. It is not necessarily identical with a company or enterprise which may consist of one establishment or more. The data was collected from 2018. | 1416 |
| Ethnicities.American Indian and Alaska Native Alone | Float | Estimated percentage of population having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment. This category includes people who indicate their race as "American Indian or Alaska Native" or report entries such as Navajo Blackfeet Inupiat Yup'ik or Central American Indian groups or South American Indian groups. | 0.3 |
| Ethnicities.Asian Alone | Float | Estimated percentage of population having origins in any of the original peoples of the Far East Southeast Asia or the Indian subcontinent including for example Cambodia China India Japan Korea Malaysia Pakistan the Philippine Islands Thailand and Vietnam. This includes people who reported detailed Asian responses such as: "Asian Indian " "Chinese " "Filipino " "Korean " "Japanese " "Vietnamese " and "Other Asian" or provide other detailed Asian responses. | 0.4 |
| Ethnicities.Black Alone | Float | Estimated percentage of population having origins in any of the Black racial groups of Africa. It includes people who indicate their race as "Black or African American " or report entries such as African American Kenyan Nigerian or Haitian. | 27.6 |
| Ethnicities.Hispanic or Latino | Float |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 39 cities in the Rhode Island by Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the East Asian Human Face with Occlusion Dataset, carefully curated to support the development of robust facial recognition systems, occlusion detection models, biometric identification technologies, and KYC verification tools. This dataset provides real-world variability by including facial images with common occlusions, helping AI models perform reliably under challenging conditions.
The dataset comprises over 5,000 high-quality facial images, organized into participant-wise sets. Each set includes:
To ensure robustness and real-world utility, images were captured under diverse conditions:
Each image is paired with detailed metadata to enable advanced filtering, model tuning, and analysis:
This rich metadata helps train models that can recognize faces even when partially obscured.
This dataset is ideal for a wide range of real-world and research-focused applications, including:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 90 cities in the Arizona by Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Northern California region's Asian American population. The variable ASIANALN records all individuals who select Asian as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with the Asian race alone.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as ASIANALN alone to the proportion of all people that live within the 1,207 block groups in the Northern California RRK region that identify as ASIANALN alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of ASIANALN individuals compared to the Northern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then ASIANALN individuals are highly concentrated locally.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset includes all personal names listed in the Wikipedia category “American people by ethnic or national origin” and all subcategories fitting the pattern “American People of [ ] descent”, in total more than 25,000 individuals. Each individual is represented by a row, with columns indicating binary membership (0/1) in each ethnic/national category.
Ethnicity inference is an essential tool for identifying disparities in public health and social sciences. Existing datasets linking personal names to ethnic or national origin often neglect to recognize multi-ethnic or multi-national identities. Furthermore, existing datasets use coarse classification schemes (e.g. classifying both Indian and Japanese people as “Asian”) that may not be suitable for many research questions. This dataset remedies these problems by including both very fine-grain ethnic/national categories (e.g. Afghan-Jewish) and more broad ones (e.g. European). Users can chose the categories that are relevant to their research. Since many Americans on Wikipedia are associated with multiple overlapping or distinct ethnicities/nationalities, these multi-ethnic associations are also reflected in the data.
Data were obtained from the Wikipedia API and reviewed manually to remove stage names, pen names, mononyms, first initials (when full names are available on Wikipedia), nicknames, honorific titles, and pages that correspond to a group or event rather than an individual.
This dataset was designed for use in training classification algorithms, but may also be independently interesting inasmuch as it is a representative sample of Americans who are famous enough to have their own Wikipedia page, along with detailed information on their ethnic/national origins.
DISCLAIMER: Due to the incomplete nature of Wikipedia, data may not properly reflect all ethnic national associations for any given individual. For example, there is no guarantee that a given Cuban Jewish person will be listed in both the “American People of Cuban descent” and the “American People of Jewish descent” categories.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Fernandina Beach by race. It includes the population of Fernandina Beach across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Fernandina Beach across relevant racial categories.
Key observations
The percent distribution of Fernandina Beach population by race (across all racial categories recognized by the U.S. Census Bureau): 85.53% are white, 7.33% are Black or African American, 1.13% are Asian, 0.23% are some other race and 5.77% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fernandina Beach Population by Race & Ethnicity. You can refer the same here
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
A year ago, when WHO declared COVID-19 outbreak a pandemic, countries in WHO South-East Asia Region were either responding to their first cases of importation or cluster of cases or keeping a strict vigil against importation of the new coronavirus.
The following months were unprecedented, and for many reasons. Scientists, experts, governments, societies, communities and even individuals responded to the new virus with urgency and measures never witnessed before.
ID: Unique Identifier Country: Name of Country TotalCases: Total Number of cases recorded so far TotalDeaths: Total Deaths recorded so far TotalRecovered: How many people survived ActiveCases: Number of people who currently has the virus TotalCasesPerMillion: How many cases are recorded per million individual TotalDeathsPerMillion: How many deaths recorded per million individual TotalTests: Total number of COVID19 tests conducted RTPCR + RAT + any other tests TotalTestsPerMillion: How many tests were conducted per million individual TotalPopulation: Population of the country
This dataset was collected from: https://www.worldometers.info/coronavirus/#countries
Fellow Data Scientist and ML engineers, can you identify which countries are doing relatively well and which ones need immediate attention? Your insights can save millions of lives in Asia!
Facebook
TwitterUse this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 525 cities in the Georgia by Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
9,900+ photos including 1,300+ document photos from 660 people from 27 countries. The dataset includes 2 photos of a person from his documents and 13 selfies. All people presented in the dataset are South Asian, East Asian or Middle Asian. The dataset contains a variety of images capturing individuals from diverse backgrounds and age groups.
Photo documents contains only a photo of a person. All personal information from the document is hidden
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F63f531bd9930fa2149f3d257f68d65ca%2FFrame%2015.png?generation=1712234429707103&alt=media" alt="">
The dataset can be utilized for a wide range of tasks, including face recognition, emotion detection, age estimation, gender classification, or any problem related to human image analysis.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2Fba893bc048ad9f8fe029c6f1833a8df9%2FFrame%2099.png?generation=1712235055301722&alt=media" alt="">
The dataset consists of: - files - includes 5 folders corresponding to each person and including 15 images (2 id photos and 13 selfies), - .csv file - contains information about the images and people in the dataset
🚀 You can learn more about our high-quality unique datasets here
keywords: biometric system, biometric dataset, face recognition database, face recognition dataset, face detection dataset, facial analysis, object detection dataset, deep learning datasets, computer vision datset, human images dataset, human faces dataset, machine learning, image-to-image, re-identification, id photos, selfies and paired id, photos, id verification models, passport, id card image, digital photo-identification, asian people, asian dataset
Facebook
TwitterLake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of London by race. It includes the population of London across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of London across relevant racial categories.
Key observations
The percent distribution of London population by race (across all racial categories recognized by the U.S. Census Bureau): 91.78% are white, 2.40% are Black or African American, 0.12% are American Indian and Alaska Native, 1.70% are Asian, 0.14% are some other race and 3.87% are multiracial.
https://i.neilsberg.com/ch/london-oh-population-by-race.jpeg" alt="London population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for London Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a product of a research project at Indiana University on biased messages on Twitter against ethnic and religious minorities. We scraped all live messages with the keywords "Asians, Blacks, Jews, Latinos, and Muslims" from the Twitter archive in 2020, 2021, and 2022.
Random samples of 600 tweets were created for each keyword and year, including retweets. The samples were annotated in subsamples of 100 tweets by undergraduate students in Professor Gunther Jikeli's class 'Researching White Supremacism and Antisemitism on Social Media' in the fall of 2022 and 2023. A total of 120 students participated in 2022. They annotated datasets from 2020 and 2021. 134 students participated in 2023. They annotated datasets from the years 2021 and 2022. The annotation was done using the Annotation Portal (Jikeli, Soemer and Karali, 2024). The updated version of our portal, AnnotHate, is now publicly available. Each subsample was annotated by an average of 5.65 students per sample in 2022 and 8.32 students per sample in 2023, with a range of three to ten and three to thirteen students, respectively. Annotation included questions about bias and calling out bias.
Annotators used a scale from 1 to 5 on the bias scale (confident not biased, probably not biased, don't know, probably biased, confident biased), using definitions of bias against each ethnic or religious group that can be found in the research reports from 2022 and 2023. If the annotators interpreted a message as biased according to the definition, they were instructed to choose the specific stereotype from the definition that was most applicable. Tweets that denounced bias against a minority were labeled as "calling out bias".
The label was determined by a 75% majority vote. We classified “probably biased” and “confident biased” as biased, and “confident not biased,” “probably not biased,” and “don't know” as not biased.
The stereotypes about the different minorities varied. About a third of all biased tweets were classified as general 'hate' towards the minority. The nature of specific stereotypes varied by group. Asians were blamed for the Covid-19 pandemic, alongside positive but harmful stereotypes about their perceived excessive privilege. Black people were associated with criminal activity and were subjected to views that portrayed them as inferior. Jews were depicted as wielding undue power and were collectively held accountable for the actions of the Israeli government. In addition, some tweets denied the Holocaust. Hispanic people/Latines faced accusations of being undocumented immigrants and "invaders," along with persistent stereotypes of them as lazy, unintelligent, or having too many children. Muslims were often collectively blamed for acts of terrorism and violence, particularly in discussions about Muslims in India.
The annotation results from both cohorts (Class of 2022 and Class of 2023) will not be merged. They can be identified by the "cohort" column. While both cohorts (Class of 2022 and Class of 2023) annotated the same data from 2021,* their annotation results differ. The class of 2022 identified more tweets as biased for the keywords "Asians, Latinos, and Muslims" than the class of 2023, but nearly all of the tweets identified by the class of 2023 were also identified as biased by the class of 2022. The percentage of biased tweets with the keyword 'Blacks' remained nearly the same.
*Due to a sampling error for the keyword "Jews" in 2021, the data are not identical between the two cohorts. The 2022 cohort annotated two samples for the keyword Jews, one from 2020 and the other from 2021, while the 2023 cohort annotated samples from 2021 and 2022.The 2021 sample for the keyword "Jews" that the 2022 cohort annotated was not representative. It has only 453 tweets from 2021 and 147 from the first eight months of 2022, and it includes some tweets from the query with the keyword "Israel". The 2021 sample for the keyword "Jews" that the 2023 cohort annotated was drawn proportionally for each trimester of 2021 for the keyword "Jews".
This dataset contains 5880 tweets that cover a wide range of topics common in conversations about Asians, Blacks, Jews, Latines, and Muslims. 357 tweets (6.1 %) are labeled as biased and 5523 (93.9 %) are labeled as not biased. 1365 tweets (23.2 %) are labeled as calling out or denouncing bias.
1180 out of 5880 tweets (20.1 %) contain the keyword "Asians," 590 were posted in 2020 and 590 in 2021. 39 tweets (3.3 %) are biased against Asian people. 370 tweets (31,4 %) call out bias against Asians.
1160 out of 5880 tweets (19.7%) contain the keyword "Blacks," 578 were posted in 2020 and 582 in 2021. 101 tweets (8.7 %) are biased against Black people. 334 tweets (28.8 %) call out bias against Blacks.
1189 out of 5880 tweets (20.2 %) contain the keyword "Jews," 592 were posted in 2020, 451 in 2021, and ––as mentioned above––146 tweets from 2022. 83 tweets (7 %) are biased against Jewish people. 220 tweets (18.5 %) call out bias against Jews.
1169 out of 5880 tweets (19.9 %) contain the keyword "Latinos," 584 were posted in 2020 and 585 in 2021. 29 tweets (2.5 %) are biased against Latines. 181 tweets (15.5 %) call out bias against Latines.
1182 out of 5880 tweets (20.1 %) contain the keyword "Muslims," 593 were posted in 2020 and 589 in 2021. 105 tweets (8.9 %) are biased against Muslims. 260 tweets (22 %) call out bias against Muslims.
The dataset contains 5363 tweets with the keywords “Asians, Blacks, Jews, Latinos and Muslims” from 2021 and 2022. 261 tweets (4.9 %) are labeled as biased, and 5102 tweets (95.1 %) were labeled as not biased. 975 tweets (18.1 %) were labeled as calling out or denouncing bias.
1068 out of 5363 tweets (19.9 %) contain the keyword "Asians," 559 were posted in 2021 and 509 in 2022. 42 tweets (3.9 %) are biased against Asian people. 280 tweets (26.2 %) call out bias against Asians.
1130 out of 5363 tweets (21.1 %) contain the keyword "Blacks," 586 were posted in 2021 and 544 in 2022. 76 tweets (6.7 %) are biased against Black people. 146 tweets (12.9 %) call out bias against Blacks.
971 out of 5363 tweets (18.1 %) contain the keyword "Jews," 460 were posted in 2021 and 511 in 2022. 49 tweets (5 %) are biased against Jewish people. 201 tweets (20.7 %) call out bias against Jews.
1072 out of 5363 tweets (19.9 %) contain the keyword "Latinos," 583 were posted in 2021 and 489 in 2022. 32 tweets (2.9 %) are biased against Latines. 108 tweets (10.1 %) call out bias against Latines.
1122 out of 5363 tweets (20.9 %) contain the keyword "Muslims," 576 were posted in 2021 and 546 in 2022. 62 tweets (5.5 %) are biased against Muslims. 240 tweets (21.3 %) call out bias against Muslims.
The dataset is provided in a csv file format, with each row representing a single message, including replies, quotes, and retweets. The file contains the following columns:
'TweetID': Represents the tweet ID.
'Username': Represents the username who published the tweet (if it is a retweet, it will be the user who retweetet the original tweet.
'Text': Represents the full text of the tweet (not pre-processed).
'CreateDate': Represents the date the tweet was created.
'Biased': Represents the labeled by our annotators if the tweet is biased (1) or not (0).
'Calling_Out': Represents the label by our annotators if the tweet is calling out bias against minority groups (1) or not (0).
'Keyword': Represents the keyword that was used in the query. The keyword can be in the text, including mentioned names, or the username.
‘Cohort’: Represents the year the data was annotated (class of 2022 or class of 2023)
We are grateful for the technical collaboration with Indiana University's Observatory on Social Media (OSoMe). We thank all class participants for the annotations and contributions, including Kate Baba, Eleni Ballis, Garrett Banuelos, Savannah Benjamin, Luke Bianco, Zoe Bogan, Elisha S. Breton, Aidan Calderaro, Anaye Caldron, Olivia Cozzi, Daj Crisler, Jenna Eidson, Ella Fanning, Victoria Ford, Jess Gruettner, Ronan Hancock, Isabel Hawes, Brennan Hensler, Kyra Horton, Maxwell Idczak, Sanjana Iyer, Jacob Joffe, Katie Johnson, Allison Jones, Kassidy Keltner, Sophia Knoll, Jillian Kolesky, Emily Lowrey, Rachael Morara, Benjamin Nadolne, Rachel Neglia, Seungmin Oh, Kirsten Pecsenye, Sophia Perkovich, Joey Philpott, Katelin
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by race. It includes the population of United States across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of United States across relevant racial categories.
Key observations
The percent distribution of United States population by race (across all racial categories recognized by the U.S. Census Bureau): 65.88% are white, 12.47% are Black or African American, 0.84% are American Indian and Alaska Native, 5.77% are Asian, 0.19% are Native Hawaiian and other Pacific Islander, 6.05% are some other race and 8.80% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterThe U.S. Census defines Asian Americans as individuals having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent (U.S. Office of Management and Budget, 1997). As a broad racial category, Asian Americans are the fastest-growing minority group in the United States (U.S. Census Bureau, 2012). The growth rate of 42.9% in Asian Americans between 2000 and 2010 is phenomenal given that the corresponding figure for the U.S. total population is only 9.3% (see Figure 1). Currently, Asian Americans make up 5.6% of the total U.S. population and are projected to reach 10% by 2050. It is particularly notable that Asians have recently overtaken Hispanics as the largest group of new immigrants to the U.S. (Pew Research Center, 2015). The rapid growth rate and unique challenges as a new immigrant group call for a better understanding of the social and health needs of the Asian American population.