Facebook
Twitterhttps://choosealicense.com/licenses/odc-by/https://choosealicense.com/licenses/odc-by/
🍷 FineWeb
15 trillion tokens of the finest data the 🌐 web has to offer
What is it?
The 🍷 FineWeb dataset consists of more than 18.5T tokens (originally 15T tokens) of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
This dataset was created by amulil
Released under GPL 2
Facebook
Twitterhttps://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
FineVideo
FineVideo Description Dataset Explorer Revisions Dataset Distribution
How to download and use FineVideo Using datasets Using huggingface_hub Load a subset of the dataset
Dataset StructureData Instances Data Fields
Dataset Creation License CC-By Considerations for Using the Data Social Impact of Dataset Discussion of Biases
Additional Information Credits Future Work Opting out of FineVideo Citation Information
Terms of use for FineVideo… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFV/finevideo.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This replication package contains datasets and scripts related to the paper: "*How do Hugging Face Models Document Datasets, Bias, and Licenses? An Empirical Study*"
## Root directory
- `statistics.r`: R script used to compute the correlation between usage and downloads, and the RQ1/RQ2 inter-rater agreements
- `modelsInfo.zip`: zip file containing all the downloaded model cards (in JSON format)
- `script`: directory containing all the scripts used to collect and process data. For further details, see README file inside the script directory.
## Dataset
- `Dataset/Dataset_HF-models-list.csv`: list of HF models analyzed
- `Dataset/Dataset_github-prj-list.txt`: list of GitHub projects using the *transformers* library
- `Dataset/Dataset_github-Prj_model-Used.csv`: contains usage pairs: project, model
- `Dataset/Dataset_prj-num-models-reused.csv`: number of models used by each GitHub project
- `Dataset/Dataset_model-download_num-prj_correlation.csv` contains, for each model used by GitHub projects: the name, the task, the number of reusing projects, and the number of downloads
## RQ1
- `RQ1/RQ1_dataset-list.txt`: list of HF datasets
- `RQ1/RQ1_datasetSample.csv`: sample set of models used for the manual analysis of datasets
- `RQ1/RQ1_analyzeDatasetTags.py`: Python script to analyze model tags for the presence of datasets. it requires to unzip the `modelsInfo.zip` in a directory with the same name (`modelsInfo`) at the root of the replication package folder. Produces the output to stdout. To redirect in a file fo be analyzed by the `RQ2/countDataset.py` script
- `RQ1/RQ1_countDataset.py`: given the output of `RQ2/analyzeDatasetTags.py` (passed as argument) produces, for each model, a list of Booleans indicating whether (i) the model only declares HF datasets, (ii) the model only declares external datasets, (iii) the model declares both, and (iv) the model is part of the sample for the manual analysis
- `RQ1/RQ1_datasetTags.csv`: output of `RQ2/analyzeDatasetTags.py`
- `RQ1/RQ1_dataset_usage_count.csv`: output of `RQ2/countDataset.py`
## RQ2
- `RQ2/tableBias.pdf`: table detailing the number of occurrences of different types of bias by model Task
- `RQ2/RQ2_bias_classification_sheet.csv`: results of the manual labeling
- `RQ2/RQ2_isBiased.csv`: file to compute the inter-rater agreement of whether or not a model documents Bias
- `RQ2/RQ2_biasAgrLabels.csv`: file to compute the inter-rater agreement related to bias categories
- `RQ2/RQ2_final_bias_categories_with_levels.csv`: for each model in the sample, this file lists (i) the bias leaf category, (ii) the first-level category, and (iii) the intermediate category
## RQ3
- `RQ3/RQ3_LicenseValidation.csv`: manual validation of a sample of licenses
- `RQ3/RQ3_{NETWORK-RESTRICTIVE|RESTRICTIVE|WEAK-RESTRICTIVE|PERMISSIVE}-license-list.txt`: lists of licenses with different permissiveness
- `RQ3/RQ3_prjs_license.csv`: for each project linked to models, among other fields it indicates the license tag and name
- `RQ3/RQ3_models_license.csv`: for each model, indicates among other pieces of info, whether the model has a license, and if yes what kind of license
- `RQ3/RQ3_model-prj-license_contingency_table.csv`: usage contingency table between projects' licenses (columns) and models' licenses (rows)
- `RQ3/RQ3_models_prjs_licenses_with_type.csv`: pairs project-model, with their respective licenses and permissiveness level
## scripts
Contains the scripts used to mine Hugging Face and GitHub. Details are in the enclosed README
Facebook
TwitterThis dataset contains different variants of the RoBERTa and XLM-RoBERTa model by Meta AI available on Hugging Face's model repository.
By making it a dataset, it is significantly faster to load the weights since you can directly attach a Kaggle dataset to the notebook rather than downloading the data every time. See the speed comparison notebook. Another benefit of loading models as a dataset is that it can be used in competitions that require internet access to be "off".
For more information on usage visit the roberta hugging face docs and the xlm-roberta hugging face docs.
Usage
To use this dataset, attach it to your notebook and specify the path to the dataset. For example:
from transformers import AutoTokenizer, AutoModelForPreTraining
MODEL_DIR = "/kaggle/input/huggingface-roberta/"
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR + "roberta-base")
model = AutoModelForPreTraining.from_pretrained(MODEL_DIR + "roberta-base")
Acknowledgements All the copyrights and IP relating to RoBERTa and XLM-RoBERTa belong to the original authors (Liu et al. and Conneau et al.) and Meta AI. All copyrights relating to the transformers library belong to Hugging Face. Please reach out directly to the authors if you have questions regarding licenses and usage.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
D4RL Dataset on HuggingFace
This repository hosts the pre-downloaded D4RL dataset on HuggingFace. It is designed to provide accelerated data downloading for users, eliminating the need to download the dataset from scratch.
Installation
To use this dataset, you need to clone it into your local .d4rl directory. Here are the steps to do so:
Navigate to your .d4rl directory:
cd ~/.d4rl
Clone the dataset repository from HuggingFace:
git clone… See the full description on the dataset page: https://huggingface.co/datasets/imone/D4RL.
Facebook
Twitterhttps://choosealicense.com/licenses/odc-by/https://choosealicense.com/licenses/odc-by/
📚 FineWeb-Edu
1.3 trillion tokens of the finest educational data the 🌐 web has to offer
Paper: https://arxiv.org/abs/2406.17557
What is it?
📚 FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We then… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
Facebook
TwitterThis dataset contains different variants of the ALBERTv2 model by Google available on Hugging Face's model repository.
By making it a dataset, it is significantly faster to load the weights since you can directly attach a Kaggle dataset to the notebook rather than downloading the data every time. See the speed comparison notebook. Another benefit of loading models as a dataset is that it can be used in competitions that require internet access to be "off".
For more information on usage visit the albert hugging face docs.
Usage
To use this dataset, attach it to your notebook and specify the path to the dataset. For example:
from transformers import AutoTokenizer, AutoModelForPreTraining
MODEL_DIR = "/kaggle/input/huggingface-albert-v2/"
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR + "albert-base-v2")
model = AutoModelForPreTraining.from_pretrained(MODEL_DIR + "albert-base-v2")
Acknowledgements All the copyrights and IP relating to ALBERT belong to the original authors (Lan et al.) and Google. All copyrights relating to the transformers library belong to Hugging Face. Please reach out directly to the authors if you have questions regarding licenses and usage.
Facebook
Twitterhttps://choosealicense.com/licenses/cdla-permissive-2.0/https://choosealicense.com/licenses/cdla-permissive-2.0/
This dataset is the Version 2.0 of microsoft/FStarDataSet.
Primary-Objective
This dataset's primary objective is to train and evaluate Proof-oriented Programming with AI (PoPAI, in short). Given a specification of a program and proof in F*, the objective of a AI model is to synthesize the implemantation (see below for details about the usage of this dataset, including the input and output).
Data Format
Each of the examples in this dataset are organized as dictionaries… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/FStarDataSet-V2.
Facebook
Twitterhttps://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2352583%2F868a18fb09d7a1d3da946d74a9857130%2FLogo.PNG?generation=1604973725053566&alt=media" alt="">
Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. It was published at the ClinicalNLP workshop at EMNLP.
💻 Code 🤗 Dataset (Hugging Face) 💾 Dataset (Kaggle) 💽 Dataset (Zenodo) 📜 Paper (ACL) 📝 Paper (Arxiv) ⚡ Pre-trained ELECTRA (Hugging Face)
We recommend downloading from Kaggle if you can authenticate through their API. The advantage to Kaggle is that the data is compressed, so it will be faster to download. Links to the data can be found at the top of the readme.
First, you will need to create an account on kaggle.com. Afterwards, you will need to install the kaggle API:
pip install kaggle
Then, you will need to follow the instructions here to add your username and key. Once that's done, you can run:
kaggle datasets download xhlulu/medal-emnlp
Now, unzip everything and place them inside the data directory:
unzip -nq crawl-300d-2M-subword.zip -d data
mv data/pretrain_sample/* data/
For the LSTM models, we will need to use the fastText embeddings. To do so, first download and extract the weights:
wget -nc -P data/ https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M-subword.zip
unzip -nq data/crawl-300d-2M-subword.zip -d data/
You can directly load LSTM and LSTM-SA with torch.hub:
```python
import torch
lstm = torch.hub.load("BruceWen120/medal", "lstm") lstm_sa = torch.hub.load("BruceWen120/medal", "lstm_sa") ```
If you want to use the Electra model, you need to first install transformers:
pip install transformers
Then, you can load it with torch.hub:
python
import torch
electra = torch.hub.load("BruceWen120/medal", "electra")
transformersIf you are only interested in the pre-trained ELECTRA weights (without the disambiguation head), you can load it directly from the Hugging Face Repository:
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("xhlu/electra-medal")
tokenizer = AutoTokenizer.from_pretrained("xhlu/electra-medal")
Download the bibtex here, or copy the text below:
@inproceedings{wen-etal-2020-medal,
title = "{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining",
author = "Wen, Zhi and Lu, Xing Han and Reddy, Siva",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.15",
pages = "130--135",
}
The ELECTRA model is licensed under Apache 2.0. The license for the libraries used in this project (transformers, pytorch, etc.) can be found in their respective GitHub repository. Our model is released under a MIT license.
The original dataset was retrieved and modified from the NLM website. By using this dataset, you are bound by the terms and conditions specified by NLM:
INTRODUCTION
Downloading data from the National Library of Medicine FTP servers indicates your acceptance of the following Terms and Conditions: No charges, usage fees or royalties are paid to NLM for this data.
MEDLINE/PUBMED SPECIFIC TERMS
NLM freely provides PubMed/MEDLINE data. Please note some PubMed/MEDLINE abstracts may be protected by copyright.
GENERAL TERMS AND CONDITIONS
Users of the data agree to:
- acknowledge NLM as the source of the data by including the phrase "Courtesy of the U.S. National Library of Medicine" in a clear and conspicuous manner,
- properly use registration and/or trademark symbols when referring to NLM products, and
- not indicate or imply that NLM has endorsed its products/services/applications.
Users who republish or redistribute the data (services, products or raw data) agree to:
- maintain the most current version of all distributed data, or
- make known in a clear and conspicuous manner that the products/services/applications do not reflect the most current/accurate data available from NLM.
These data are produced with a reasonable standard of care, but NLM makes no warranties express or implied, including no warranty of merchantability or fitness for particular purpose, regarding the accuracy or completeness of the data. Users agree to hold NLM and the U.S. Government harmless from any liability resulting from errors in the data. NLM disclaims any liability for any consequences due to use, misuse, or interpretation of information contained or not contained in the data.
NLM does not provide legal advice regarding copyright, fair use, or other aspects of intellectual property rights. See the NLM Copyright page.
NLM reserves the right to change the type and format of its machine-readable data. NLM will take reasonable steps to inform users of any changes to the format of the data before the data are distributed via the announcement section or subscription to email and RSS updates.
Facebook
TwitterThe dataset consists of 59166 jsonl files and is ~895GB compressed. It is a cleaned and deduplicated version of Together's RedPajama. Check out our blog post explaining our methods, our code on GitHub, and join the discussion on the Cerebras Discord.
Getting Started
You can download the dataset using Hugging Face datasets: from datasets import load_dataset ds = load_dataset("cerebras/SlimPajama-627B")
Background
Today we are releasing SlimPajama – the largest… See the full description on the dataset page: https://huggingface.co/datasets/cerebras/SlimPajama-627B.
Facebook
Twitterhttps://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
This data accompanies the WebUI project (https://dl.acm.org/doi/abs/10.1145/3544548.3581158) For more information, check out the project website: https://uimodeling.github.io/ To download this dataset, you need to install the huggingface-hub package pip install huggingface-hub
Use snapshot_download from huggingface_hub import snapshot_download snapshot_download(repo_id="biglab/webui-all", repo_type="dataset")
IMPORTANT
Before downloading and using, please review the copyright info here:… See the full description on the dataset page: https://huggingface.co/datasets/biglab/webui-all.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
KTDA-Datasets
This dataset card aims to describe the datasets used in the KTDA.
Install
pip install huggingface-hub
Usage
huggingface-cli download --repo-type dataset XavierJiezou/ktda-datasets --local-dir data --include grass.zip huggingface-cli download --repo-type dataset XavierJiezou/ktda-datasets --local-dir data --include cloud.zip
unzip grass.zip -d grass unzip cloud.zip -d l8_biome… See the full description on the dataset page: https://huggingface.co/datasets/XavierJiezou/ktda-datasets.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Downloading the Options IV SP500 Dataset
This document will guide you through the steps to download the Options IV SP500 dataset from Hugging Face Datasets. This dataset includes data on the options of the S&P 500, including implied volatility. To start, you'll need to install Hugging Face's datasets library if you haven't done so already. You can do this using the following pip command: !pip install datasets
Here's the Python code to load the Options IV SP500 dataset from Hugging… See the full description on the dataset page: https://huggingface.co/datasets/gauss314/options-IV-SP500.
Facebook
TwitterDataset Card for The Cauldron
Dataset description
The Cauldron is part of the Idefics2 release. It is a massive collection of 50 vision-language datasets (training sets only) that were used for the fine-tuning of the vision-language model Idefics2.
Load the dataset
To load the dataset, install the library datasets with pip install datasets. Then, from datasets import load_dataset ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d")
to download and load the… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceM4/the_cauldron.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MInDS-14
MINDS-14 is training and evaluation resource for intent detection task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties.
Example
MInDS-14 can be downloaded and used as follows: from datasets import load_dataset
minds_14 = load_dataset("PolyAI/minds14", "fr-FR") # for French
Facebook
TwitterDataset Card for LaSOT
Dataset Summary
Large-scale Single Object Tracking (LaSOT) aims to provide a dedicated platform for training data-hungry deep trackers as well as assessing long-term tracking performance. This repository contains the conference version of LaSOT, published in CVPR-19 (LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking). LaSOT is featured in:
Large-scale: 1,400 sequences with more than 3.5 millions frames High-quality: Manual… See the full description on the dataset page: https://huggingface.co/datasets/l-lt/LaSOT.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
TAO-Amodal Dataset
Official Source for Downloading the TAO-Amodal and TAO Dataset. 📙 Project Page | 💻 Code | 📎 Paper Link | ✏️ Citations
Contact: 🙋🏻♂️Cheng-Yen (Wesley) Hsieh
Dataset Description
Our dataset augments the TAO dataset with amodal bounding box annotations for fully invisible, out-of-frame, and occluded objects. Note that this implies TAO-Amodal also includes modal segmentation masks (as visualized in the color overlays above). Our… See the full description on the dataset page: https://huggingface.co/datasets/chengyenhsieh/TAO-Amodal.
Facebook
Twitterhttps://choosealicense.com/licenses/cdla-sharing-1.0/https://choosealicense.com/licenses/cdla-sharing-1.0/
Dataset containing synthetically generated (by GPT-3.5 and GPT-4) short stories that only use a small vocabulary. Described in the following paper: https://arxiv.org/abs/2305.07759. The models referred to in the paper were trained on TinyStories-train.txt (the file tinystories-valid.txt can be used for validation loss). These models can be found on Huggingface, at roneneldan/TinyStories-1M/3M/8M/28M/33M/1Layer-21M. Additional resources: tinystories_all_data.tar.gz - contains a superset of… See the full description on the dataset page: https://huggingface.co/datasets/roneneldan/TinyStories.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
Facebook
Twitterhttps://choosealicense.com/licenses/odc-by/https://choosealicense.com/licenses/odc-by/
🍷 FineWeb
15 trillion tokens of the finest data the 🌐 web has to offer
What is it?
The 🍷 FineWeb dataset consists of more than 18.5T tokens (originally 15T tokens) of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.