3 datasets found
  1. d

    Bathymetric and supporting data for various water supply lakes in...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Bathymetric and supporting data for various water supply lakes in north-central and west-central Missouri, 2020 [Dataset]. https://catalog.data.gov/dataset/bathymetric-and-supporting-data-for-various-water-supply-lakes-in-north-central-and-west-c
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Missouri
    Description

    Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. In June and July 2020, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources and in collaboration with various cities in north- and west-central Missouri, completed bathymetric surveys of 12 lakes using a marine-based mobile mapping unit, which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Bathymetric data were collected as the vessel traversed longitudinal transects to provide nearly complete coverage of the lake. The MBES was electronically tilted in some areas to improve data collection along the shoreline, in coves, and in areas that are shallower than about 2.0 meters deep (the practical limit of reasonable and safe data collection with the MBES). At some lakes, supplemental data were collected in shallow areas using an acoustic Doppler current profiler (ADCP) mounted on a remote-controlled vessel equipped with a differential global positioning system (DGPS). Bathymetric quality-assurance data also were collected at each lake to evaluate the vertical accuracy of the gridded bathymetric point data from the MBES. As part of the survey at each of these lakes, one or more reference marks or temporary bench marks were established to provide a point of known location and elevation from which the water surface could be measured or another survey could be referenced at a later date. In addition, the elevation of a primary spillway or intake was surveyed, when present. These points were surveyed using a real-time kinematic (RTK) Global Navigation Satellite System (GNSS) receiver connected to the Missouri Department of Transportation real-time network (RTN), which provided real-time survey-grade horizontal and vertical positioning, using field procedures as described in Rydlund and Densmore (2012) for a Level II real-time positioning survey. Mozingo Lake and Maryville Reservoir were surveyed in June 2020 as part of the group of lakes surveyed in 2020. However, extraordinary interest in the bathymetry at Mozingo Lake by the city of Maryville necessitated these data being released earlier than the other 2020 lakes (Huizinga and others, 2021, 2022). The MBES data can be combined with light detection and ranging (lidar) data to prepare a bathymetric map and a surface area and capacity table for each lake. These data also can be used to compare the current bathymetric surface with any previous bathymetric surface. Data from each of the remaining 10 lakes surveyed in 2020 are provided in ESRI Shapefile format (ESRI, 2021). Each of the lakes surveyed in 2020 except Higginsville has a child page containing the metadata and two zip files, one for the bathymetric data, and the other for the bathymetric quality-assurance data. Data from the surveys at the Upper and Lower Higginsville Reservoirs are in two zip files on a single child page, one for the bathymetric data and one for the bathymetric quality assurance data of both lakes, and a single summary metadata file. The zip files follow the format of "####2020_bathy_pts.zip" or "####2020_QA_raw.zip," where "####" is the lake name. Each of these zip files contains a shapefile with an attribute table. Attribute/column labels of each table are described in the "Entity and attribute" section of the metadata file. The various reference marks and additional points from all the lake surveys are provided in ESRI Shapefile format (ESRI, 2021) with an attribute table on the main landing page. Attribute/column labels of this table are described in the "Entity and attribute" section of the metadata file. References Cited: Environmental Systems Research Institute, 2021, ArcGIS: accessed May 20, 2021, at https://www.esri.com/en-us/arcgis/about-arcgis/overview Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoirs for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p., https://doi.org/10.3133/ofr20141005. Huizinga, R.J., Oyler, L.D., and Rivers, B.C., 2022, Bathymetric contour maps, surface area and capacity tables, and bathymetric change maps for selected water-supply lakes in northwestern Missouri, 2019 and 2020: U.S. Geological Survey Scientific Investigations Map 3486, 12 sheets, includes 21-p. pamphlet, https://doi.org/10.3133/sim3486. Huizinga R.J., Rivers, B.C., and Oyler, L.D., 2021, Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P92M53NJ. Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000–2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix, https://pubs.usgs.gov/of/2013/1101. Rydlund, P.H., Jr., and Densmore, B.K., 2012, Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey: U.S. Geological Survey Techniques and Methods, book 11, chap. D1, 102 p. with appendixes, https://doi.org/10.3133/tm11D1.

  2. TurtleSAT

    • gbif.org
    • researchdata.edu.au
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atlas of Living Australia (2025). TurtleSAT [Dataset]. http://doi.org/10.15468/jkb84j
    Explore at:
    Dataset updated
    Jun 6, 2025
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Atlas of Living Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TurtleSAT - Turtle Survey and Analysis Tools - is an mobile app and citizen science mapping tool produced by the 1 Million Turtles Community Conservation program, allowing communities to map the location of freshwater turtles in waterways and wetlands across the country.

    Australia's freshwater turtles are under serious threat, and they need our help for survival! Mounting evidence now suggests that many turtle species are declining across vast areas of Australia due to widespread drought, fox predation and human activities. To ensure their survival, important evidence needs to be gathered to find out where turtles live and breed, what the major causes of decline are across Australia, how far they disperse, and whether there are important source populations that help populate other areas.

    The app invites users assist by recording where they see turtles, their nests, if they are killed on the road, or any other evidence of turtles like skeletal remains.

    The TurtleSAT project is being coordinated by Dr Ricky Spencer at the University of Western Sydney in partnership with the University of Sydney, the University of South Australia, the Field Naturalists Society of South Australia and community groups throughout the Murray River region. The Centre for Invasive Species Solutions and NSW Department of Primary Industries support the project through the FeralScan program and its associated web-mapping technology.

  3. D

    NSW State Vegetation Type Map (Pre-Clearing)

    • data.nsw.gov.au
    • researchdata.edu.au
    pdf, url, zip
    Updated Mar 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2025). NSW State Vegetation Type Map (Pre-Clearing) [Dataset]. https://data.nsw.gov.au/data/dataset/nsw-state-vegetation-type-map-pre-clearing
    Explore at:
    url, pdf, zipAvailable download formats
    Dataset updated
    Mar 28, 2025
    Dataset provided by
    Department of Climate Change, Energy, the Environment and Water of New South Waleshttps://www.nsw.gov.au/departments-and-agencies/dcceew
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    This Pre-Clearing map represents the pre-clearing extent of the State Vegetation Type Map (SVTM). Both SVTM and SVTM (Pre-Clearing) map each Plant Community Type, Vegetation Class and Vegetation Formation at a regional scale across all tenures in NSW. Pre-clearing PCT mapping is available for both eastern NSW and Far Western NSW. Coverage of Central NSW is a work in progress.

    Pre-clearing extent of PCTs was developed using a combination of aerial photographic interpretation, environmental layers and historical documents. This map is updated periodically as part of the Integrated BioNet Vegetation Data program to improve quality and alignment to the NSW vegetation classification hierarchy.

    Further information and technical documents about the SVTM is available from the State Vegetation Type Mapping Program Page

    Current Release C2.0.M2.1 (November2024)

    This release includes revisions, using the most recent NSW PCT Classification Masterlist (represented by “C2.0” in the version release number). PCT spatial distributions were manually edited based on user and community feedback since the previous C2.0.M2.0 release.

    Detailed technical information is available here.

    Data Access

    Map data may be downloaded, viewed within the SEED Map Viewer, or accessed via the underlying ArcGIS REST Services or WMS for integration in GIS or business applications.

    The Trees Near Me NSW app provides quick access to view the map using a mobile device or desktop. Download the app from Google Play or the App Store, or access the web site at https://treesnearme.app.

    Map Data Type

    The map is supplied as ESRI Feature Class (Quickview) and 5m GeoTiff Raster, and can be viewed and analysed in most commercial and open-source spatial software packages. If you prefer to use the download package, we supply an ArcGIS v10.6 mxd and/or a layer file for suggested symbology. The raster attributes contain PCT, Vegetation Class and Vegetation Formation.

    Feedback and Support

    We welcome your feedback to assist us in continuously improving our products. To help us track and process your feedback, please use the SEED Data Feedback tool available via the SEED map viewer or the Feedback function in Trees Near Me NSW.

    For further support, contact the BioNet Team at bionet@environment.nsw.gov.au.

    Useful Related Data

    NSW State Vegetation Type Map: regional scale map of extant NSW Plant Community Types, Vegetation classes and Vegetation Formations.

    NSW BioNet Flora Survey Plots – PCT Reference Sites: full floristic plots used in the development of the quantitative Plant Community Type (PCT) classification. Currently available for eastern NSW PCTs version C2.0.

    NSW State Vegetation Type Map - technical notes

    Eastern NSW - percentage cleared technical notes.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Bathymetric and supporting data for various water supply lakes in north-central and west-central Missouri, 2020 [Dataset]. https://catalog.data.gov/dataset/bathymetric-and-supporting-data-for-various-water-supply-lakes-in-north-central-and-west-c

Bathymetric and supporting data for various water supply lakes in north-central and west-central Missouri, 2020

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Missouri
Description

Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. In June and July 2020, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources and in collaboration with various cities in north- and west-central Missouri, completed bathymetric surveys of 12 lakes using a marine-based mobile mapping unit, which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Bathymetric data were collected as the vessel traversed longitudinal transects to provide nearly complete coverage of the lake. The MBES was electronically tilted in some areas to improve data collection along the shoreline, in coves, and in areas that are shallower than about 2.0 meters deep (the practical limit of reasonable and safe data collection with the MBES). At some lakes, supplemental data were collected in shallow areas using an acoustic Doppler current profiler (ADCP) mounted on a remote-controlled vessel equipped with a differential global positioning system (DGPS). Bathymetric quality-assurance data also were collected at each lake to evaluate the vertical accuracy of the gridded bathymetric point data from the MBES. As part of the survey at each of these lakes, one or more reference marks or temporary bench marks were established to provide a point of known location and elevation from which the water surface could be measured or another survey could be referenced at a later date. In addition, the elevation of a primary spillway or intake was surveyed, when present. These points were surveyed using a real-time kinematic (RTK) Global Navigation Satellite System (GNSS) receiver connected to the Missouri Department of Transportation real-time network (RTN), which provided real-time survey-grade horizontal and vertical positioning, using field procedures as described in Rydlund and Densmore (2012) for a Level II real-time positioning survey. Mozingo Lake and Maryville Reservoir were surveyed in June 2020 as part of the group of lakes surveyed in 2020. However, extraordinary interest in the bathymetry at Mozingo Lake by the city of Maryville necessitated these data being released earlier than the other 2020 lakes (Huizinga and others, 2021, 2022). The MBES data can be combined with light detection and ranging (lidar) data to prepare a bathymetric map and a surface area and capacity table for each lake. These data also can be used to compare the current bathymetric surface with any previous bathymetric surface. Data from each of the remaining 10 lakes surveyed in 2020 are provided in ESRI Shapefile format (ESRI, 2021). Each of the lakes surveyed in 2020 except Higginsville has a child page containing the metadata and two zip files, one for the bathymetric data, and the other for the bathymetric quality-assurance data. Data from the surveys at the Upper and Lower Higginsville Reservoirs are in two zip files on a single child page, one for the bathymetric data and one for the bathymetric quality assurance data of both lakes, and a single summary metadata file. The zip files follow the format of "####2020_bathy_pts.zip" or "####2020_QA_raw.zip," where "####" is the lake name. Each of these zip files contains a shapefile with an attribute table. Attribute/column labels of each table are described in the "Entity and attribute" section of the metadata file. The various reference marks and additional points from all the lake surveys are provided in ESRI Shapefile format (ESRI, 2021) with an attribute table on the main landing page. Attribute/column labels of this table are described in the "Entity and attribute" section of the metadata file. References Cited: Environmental Systems Research Institute, 2021, ArcGIS: accessed May 20, 2021, at https://www.esri.com/en-us/arcgis/about-arcgis/overview Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoirs for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p., https://doi.org/10.3133/ofr20141005. Huizinga, R.J., Oyler, L.D., and Rivers, B.C., 2022, Bathymetric contour maps, surface area and capacity tables, and bathymetric change maps for selected water-supply lakes in northwestern Missouri, 2019 and 2020: U.S. Geological Survey Scientific Investigations Map 3486, 12 sheets, includes 21-p. pamphlet, https://doi.org/10.3133/sim3486. Huizinga R.J., Rivers, B.C., and Oyler, L.D., 2021, Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P92M53NJ. Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000–2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix, https://pubs.usgs.gov/of/2013/1101. Rydlund, P.H., Jr., and Densmore, B.K., 2012, Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey: U.S. Geological Survey Techniques and Methods, book 11, chap. D1, 102 p. with appendixes, https://doi.org/10.3133/tm11D1.

Search
Clear search
Close search
Google apps
Main menu