7 datasets found
  1. s

    Opérations coordonnées par les CROSS

    • data.smartidf.services
    • gimi9.com
    • +2more
    csv, excel, json
    Updated Mar 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Opérations coordonnées par les CROSS [Dataset]. https://data.smartidf.services/explore/dataset/operations-coordonnees-par-les-cross/
    Explore at:
    json, excel, csvAvailable download formats
    Dataset updated
    Mar 17, 2023
    Description

    Ce jeu de données contient toutes les données statistiques disponibles informatiquement sur les interventions d’assistance et de sauvetage coordonnées par les CROSS (Centres régionaux opérationnels de surveillance et de sauvetage). Il renseigne, pour chaque opération d’assistance ou de secours coordonnée en eaux françaises :

    • quel était le motif d’intervention ;
    • quand, comment et par qui l’alerte a été donnée ;
    • le contexte météo et géographique de l’opération ;
    • quels flotteurs étaient impliqués ;
    • quels moyens aériens, nautiques ou terrestres ont été engagés ;
    • quel a été le bilan humain de l’opération.

    Attention : Du fait d'un changement de logiciel métier en 2021, les données ultérieures à 2021 portent uniquement sur les événements en outre-mer.

    Ce jeu de données contient des données propres à un métier complexe et chaque fichier comporte plusieurs centaines de milliers de lignes. Nous vous recommandons de lire attentivement la documentation mise à votre disposition avant toute analyse.

    Ce jeu de données est produit par la Direction des Affaires Maritimes.

    Mise à jour

    L'actualisation des données est quotidienne et comprend les données jusqu'à J-1.

  2. g

    Operation CROSS 76 stats 1992 2020 | gimi9.com

    • gimi9.com
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Operation CROSS 76 stats 1992 2020 | gimi9.com [Dataset]. https://gimi9.com/dataset/fr_63cf22232e16dd545140440d
    Explore at:
    Dataset updated
    Sep 8, 2020
    Description

    Opérations du CROSS dont les ports de référence sont situés dans le Département de la Seine-Maritime, de 1992 à 2020. Il s’agit d’une extraction des données du Ministère de la Transition écologique et solidaire, disponibles à l’échelle nationale, sur les interventions d’assistance et de sauvetage coordonnées par les CROSS (Centres régionaux opérationnels de surveillance et de sauvetage) portant sur des opérations d’assistance en eaux françaises. La sélection proposée ici concerne les opérations dont les ports de référence (voir métadonnées) sont situés en Seine-Maritime. Une documentation très complète sur ce jeu de données est disponible à l’adresse suivante : Ces données font par ailleurs l’objet d’une carte des secours en mer (SECMAR) à l’adresse suivante : Métadonnées Lien vers les métadonnées Ressources complémentaires * Site data.gouv : La plate forme ouverte des données publiques françaises propose, à la page dédiée au Ministère de la transition écologique et solidaire, de nombreux jeux de données relatif à la thématique maritime (téléchargeables aux format csv) : registre des navires professionnels français, titres de qualification des marins, etc. * Site du port du Havre : Le site internet du port du Havre propose une carte en temps réel des mouvements au port, un accès aux données SIMBAD sur la houle et le vent, divers documents réglementaires et formulaires à télécharger, des informations sur le statut des ponts et écluses, etc. * Site de l’association SNSM - Les sauveteurs en mer : Ce site dédie une page au thème « Comment alerter les secours en mer ? » * Site Ministère de la Transition écologique et solidaire : Ce site propose une page dédiée à la surveillance et sauvetage en mer, illustrée de plusieurs infographies et proposant notamment des liens vers les pages des sites internet des CROSS Gris-nez (Manche Est – Pas de Calais, qui intervient en Seine-Maritime au Nord du Cap d’Antifer) et Jobourg (Manche Centrale, qui intervient en Seine-Maritime au Sud du Cap d’Antifer).

  3. Deployment Locations of Hong Kong Cross-boundary Public Services...

    • data.gov.hk
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk, Deployment Locations of Hong Kong Cross-boundary Public Services Self-service Kiosks | DATA.GOV.HK [Dataset]. https://data.gov.hk/en-data/dataset/hk-dpo-cbpsjson01-cbpskiosk
    Explore at:
    Dataset provided by
    data.gov.hk
    Area covered
    Hong Kong
    Description

    The "Cross-boundary Public Services" (CBPS) initiative aims to enable enterprises and the public in both Hong Kong and Guangdong to enjoy simple and convenient cross-boundary services, and to facilitate the provision of public services and investment in the Greater Bay Area. Data on the deployment locations of Hong Kong Cross-boundary Public Services self-service kiosks, including locations, addresses, coordinates and opening hours are provided below in CSV format.

  4. 3d Triangles In Space

    • kaggle.com
    zip
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Avvaru Divya Sai Krishna (2024). 3d Triangles In Space [Dataset]. https://www.kaggle.com/datasets/divyasaikrishna/3d-triangles-in-space
    Explore at:
    zip(5697 bytes)Available download formats
    Dataset updated
    Mar 26, 2024
    Authors
    Avvaru Divya Sai Krishna
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The provided CSV file, named triangles_3d.csv, contains a dataset of 300 rows, structured into three columns: p, q, and z. These columns represent the x, y, and z coordinates, respectively, of points in a three-dimensional space. The dataset is organized such that every set of three consecutive rows corresponds to the three vertices of a triangle in 3D space, totaling 100 triangles within the file.

    Objectives:

    The primary objectives with this dataset involve performing geometric calculations on each set of three points (each triangle) to determine the following:

    1. Area of Each Triangle: Calculating the area of a triangle in 3D space requires using the formula derived from the cross product of vectors formed by the triangle's vertices. This provides the base for computing the area as half the magnitude of the cross product of two sides of the triangle.

    2. Angles Between Edges: The angle between any two edges of a triangle can be calculated using the dot product formula for vectors. This involves dividing the dot product of the two vectors by the product of the magnitudes of these vectors, and then applying the inverse cosine function to find the angle in radians or degrees.

    3. Type of Triangle: Determining the type of each triangle (equilateral, isosceles, scalene, right-angled) involves comparing the lengths of the triangle's sides. In 3D space, the side lengths are found by calculating the Euclidean distance between each pair of vertices. The classification is then based on the equality of the side lengths (for equilateral, isosceles, or scalene) and the applicability of the Pythagorean theorem (for right-angled triangles).

    Data Structure:

    • Columns:

      • p: x-coordinate of a point in 3D space.
      • q: y-coordinate of a point in 3D space.
      • z: z-coordinate of a point in 3D space.
    • Rows: Each row represents a point in 3D space. Every group of three rows forms a triangle, with the points acting as the triangle's vertices.

    Implementation Notes:

    • Vector Representation: To perform calculations, it's useful to represent the edges of each triangle as vectors. This can be done by subtracting the coordinates of the starting point of an edge from the ending point's coordinates.
    • Cross and Dot Product: The cross and dot products are essential in calculating the area and angles, respectively. These operations are fundamental in vector algebra and can be readily performed using libraries such as NumPy in Python.
    • Triangle Classification: After calculating side lengths, the type of triangle can be determined by comparing these lengths. Special care must be taken to accurately identify right-angled triangles, potentially by checking if the squares of the lengths of the shorter sides sum up to the square of the length of the longest side.

    Usage Scenario:

    This dataset can serve as a practical resource for educational purposes, algorithm development, and software testing, especially for applications related to computer graphics, geometric modeling, and spatial analysis. The geometric calculations outlined above are not only fundamental in understanding the properties of shapes in 3D space but also have applications in various fields such as architecture, engineering, and game development.

  5. E

    Electric Cross Arm Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Electric Cross Arm Report [Dataset]. https://www.datainsightsmarket.com/reports/electric-cross-arm-1692314
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global electric cross arm market is experiencing robust growth, driven by the increasing demand for reliable power transmission and distribution infrastructure across diverse sectors. The expansion of electricity grids, particularly in developing economies, coupled with the rising adoption of renewable energy sources, fuels significant market expansion. Furthermore, advancements in material science are leading to the development of lighter, stronger, and more durable cross arms, enhancing efficiency and reducing maintenance costs. The power industry remains the largest application segment, followed by railroads and refineries, reflecting the critical role of electric cross arms in ensuring consistent power supply and operational safety in these sectors. Different cross arm types cater to specific needs, with power pole cross arms dominating due to their widespread use in utility infrastructure. Key players are strategically focusing on innovation, capacity expansion, and geographic diversification to capture market share. While the market faces challenges such as fluctuating raw material prices and stringent regulatory compliance, the overall outlook remains positive, projecting substantial growth over the next decade. Competition among established players and new entrants is expected to intensify, further driving innovation and price optimization within the industry. The market's geographical distribution shows a strong presence in North America and Europe, driven by well-established infrastructure and regulatory frameworks. However, the Asia-Pacific region is emerging as a high-growth market, fueled by rapid urbanization and industrialization, specifically in countries like China and India. Ongoing investments in infrastructure development across various regions are expected to create ample opportunities for market expansion. The market is segmented by application (power industry, railroads, refineries) and type (power pole, line, telephone pole, and light pole cross arms). Each segment presents unique opportunities, with companies specializing in specific product lines or applications. Industry collaboration and technological advancements will likely shape the market's future trajectory, influencing the adoption of innovative materials and manufacturing processes. The consistent demand for reliable infrastructure coupled with ongoing technological progress suggests a positive and expanding market outlook for electric cross arms over the forecast period.

  6. Cross-Component MI

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). Cross-Component MI [Dataset]. https://catalog.data.gov/dataset/cross-component-mi
    Explore at:
    Dataset updated
    Mar 8, 2025
    Dataset provided by
    Social Security Administrationhttp://ssa.gov/
    Description

    Monthly reports of workloads processed in the Office of Earnings Operations in more than one division. Reports on quantities of work received, processed, pending and average processing times.

  7. I

    India Real-Time Payments Industry Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). India Real-Time Payments Industry Report [Dataset]. https://www.marketreportanalytics.com/reports/india-real-time-payments-industry-91429
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    India
    Variables measured
    Market Size
    Description

    The India real-time payments (RTP) industry is experiencing explosive growth, driven by the widespread adoption of smartphones, increasing digital literacy, and government initiatives promoting digital transactions. With a CAGR of 33.50% from 2019 to 2024, the market demonstrates significant potential. The industry's value, estimated at [Insert reasonable estimate based on available data, for example: ₹500 million] in 2025, is projected to surge substantially over the forecast period (2025-2033). This growth is fueled primarily by the P2P (person-to-person) segment, which benefits from the convenience and speed offered by RTP systems. However, the P2B (person-to-business) segment is also poised for significant expansion as more businesses integrate RTP into their payment processing systems to streamline transactions and reduce costs. Key players like Paytm, PhonePe, and NPCI dominate the market, leveraging their extensive user bases and robust infrastructure. While the market faces challenges such as infrastructure limitations in certain regions and cybersecurity concerns, the overall outlook remains overwhelmingly positive, indicating considerable investment opportunities and substantial future growth. The continued growth trajectory is expected due to several factors. The Indian government's continued push for digitalization, including initiatives like the Unified Payments Interface (UPI), will remain a significant driver. Furthermore, the rising adoption of e-commerce and online services will create a sustained demand for quick and secure payment solutions. The increasing penetration of mobile internet and financial inclusion initiatives will further expand the user base, contributing to the market's exponential growth. While challenges such as addressing the digital divide and ensuring robust security measures remain, the inherent advantages of RTP systems – speed, efficiency, and cost-effectiveness – position the India RTP industry for continued dominance in the global payments landscape. The expansion into new technologies like AI and blockchain for enhanced security and efficiency will also influence further growth. Recent developments include: June 2022 - The Reserve Bank of India (RBI) proposed to link credit cards with UPI (unified payment system looking forward to future growth as of 2022 in India, there was approximately 594 crore credit card transaction., June 2022 - RBI proposed that it's Looking to Expand UPI For Cross Border Remittance Via International Partnerships. RBI claims that the efforts with various countries are at different stages - but cross-border remittance via PayNow will begin after July 2022. So far, UPI has partnered with Singapore-based PayNow, which could be the foundation of cross border payments ecosystem in India, April 2022 - Google Pay has launched 'Tap to pay a new feature in India, for UPI, in collaboration with Pine Labs. The feature makes use of Near Field Communication (NFC) technology. With the latest figures in the Indian market, approximately 1842 mobile devices are offering NFC technology in the Indian market(91 mobiles)., March 2022 - Reserve Bank of India (RBI) released the framework for geo-tagging of payment system touch points to ensure proper monitoring of payment acceptance infrastructure geo-tagging refers to capturing the geographical coordinates ( longitude and latitude) of payment touchpoints deployed by the merchant to receive customer payments.. Key drivers for this market are: Increased Smartphone Penetration, Falling Reliance on Traditional Banking; Ease of Convenience. Potential restraints include: Increased Smartphone Penetration, Falling Reliance on Traditional Banking; Ease of Convenience. Notable trends are: P2B Segment Will Hold Significant Market Share.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2023). Opérations coordonnées par les CROSS [Dataset]. https://data.smartidf.services/explore/dataset/operations-coordonnees-par-les-cross/

Opérations coordonnées par les CROSS

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
json, excel, csvAvailable download formats
Dataset updated
Mar 17, 2023
Description

Ce jeu de données contient toutes les données statistiques disponibles informatiquement sur les interventions d’assistance et de sauvetage coordonnées par les CROSS (Centres régionaux opérationnels de surveillance et de sauvetage). Il renseigne, pour chaque opération d’assistance ou de secours coordonnée en eaux françaises :

  • quel était le motif d’intervention ;
  • quand, comment et par qui l’alerte a été donnée ;
  • le contexte météo et géographique de l’opération ;
  • quels flotteurs étaient impliqués ;
  • quels moyens aériens, nautiques ou terrestres ont été engagés ;
  • quel a été le bilan humain de l’opération.

Attention : Du fait d'un changement de logiciel métier en 2021, les données ultérieures à 2021 portent uniquement sur les événements en outre-mer.

Ce jeu de données contient des données propres à un métier complexe et chaque fichier comporte plusieurs centaines de milliers de lignes. Nous vous recommandons de lire attentivement la documentation mise à votre disposition avant toute analyse.

Ce jeu de données est produit par la Direction des Affaires Maritimes.

Mise à jour

L'actualisation des données est quotidienne et comprend les données jusqu'à J-1.

Search
Clear search
Close search
Google apps
Main menu