PAZ Image Products can be acquired in 8 image modes with flexible resolutions (from 1 m to 40 m) and scene sizes. Thanks to different polarimetric combinations and processing levels the delivered imagery can be tailored specifically to meet the requirements of the application. Available modes are: • StripMap mode (SM) in single and dual polarisation: The ground swath is illuminated with a continuous train of pulses while the antenna beam is pointed to a fixed angle, both in elevation and in azimuth. • ScanSAR mode (SC) in single polarisation: the swath width is increased respecting to the StripMap mode, it is composed of four different sub-swaths, which are obtained by antenna steering in elevation direction. • Wide ScanSAR mode (WS), in single polarisation: the usage of six sub-swaths allows to obtain a higher swath coverage product. • Spotlight modes: in single and dual polarisation: Spotlight modes take advantage of the beam steering capability in the azimuth plane to illuminate for a longer time the area of interest: a sensible improvement of the azimuth resolution is achieved at the expense of a shorter scene size. Spotlight mode (SL) is designed to maximise the azimuth scene extension at the expense of the spatial resolution, and High Resolution Spotlight mode (HS) is designed to maximize the spatial resolutions at the expense of the scene extension. • Staring Spotlight mode (ST), in single polarisation: The virtual rotation point coincides with the center of the beam: the image length in the flight direction is constrained by the projection on- ground of the azimuth beamwidth and it leads to a target azimuth illumination time increment and to achieve the best azimuth resolution. There are two main classes of products: • Spatially Enhanced products (SE): designed with the target of maximize the spatial resolution in pixels with squared size, so the larger resolution value of azimuth or ground range determines the square pixel size, and the smaller resolution value is adjusted to this size and the corresponding reduction of the bandwidth is used for speckle reduction. • Radiometrically Enhanced products (RE): designed with the target of maximize the radiometry, so the range and azimuth resolutions are intentionally decreased to significantly reduce speckle by averaging several looks. The following geometric projections are offered: • Single Look Slant Range Complex (SSC): single look product of the focused radar signal: the pixels are spaced equidistant in azimuth and in slant range. No geocoding is available, no radiometric artifacts included. Product delivered in the DLR-defined binary COSAR format. The SSC product is intended for applications that require the full bandwidth and phase information, e.g. for SAR interferometry and polarimetry. • Multi Look Ground Range Detected (MGD): detected multi look product in GeoTiff format with reduced speckle and approximately square resolution cells on ground. The image coordinates are oriented along flight direction and along ground range; the pixel spacing is equidistant in azimuth and in ground range. A simple polynomial slant to ground projection is performed in range using a WGS84 ellipsoid and an average, constant terrain height parameter. No image rotation to a map coordinate system is performed and interpolation artifacts are thus avoided. • Geocoded Ellipsoid Corrected (GEC): multi look detected product in GeoTiff format. It is projected and re-sampled to the WGS84 reference ellipsoid assuming one average terrain height. No terrain correction performed. UTM is the standard projection, for polar regions UPS is applied. • Enhanced Ellipsoid Corrected (EEC): multi look detected product in GeoTiff format. It is projected and re-sampled to the WGS84 reference ellipsoid. The image distortions caused by varying terrain height are corrected using an external DEM; therefore the pixel localization in these products is highly accurate. UTM is the standard projection, for polar regions UPS is applied. StripMap Single Mode ID: SM-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 30 x 50 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 2.99 - 3.52 at (45° - 20°) - MGD, GEC, EEC (RE)[Ground range] 6.53 - 7.65 at (45° - 20°) - SSC[Slant range] 1.1 (150 MHz bandwidth) 1.7 (100 MHz bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 3.05 - MGD, GEC, EEC (RE) 6.53 - 7.60 at (45° - 20°) - SSC 3.01 StripMap Dual Mode ID: SM-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 15 x 50 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 6 - MGD, GEC, EEC (RE)[Ground range] 7.51 - 10.43 at (45° - 20°) - SSC[Slant range] 1.18 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 6.11 - MGD, GEC, EEC (RE) 7.52 - 10.4 at (45° - 20°) - SSC ScanSAR Mode ID: SC Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 100 x 150 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] N/A - MGD, GEC, EEC (RE)[Ground range] 16.79 - 18.19 at (45° - 20°) - SSC[Slant range] 1.17 - 3.4 (depending on range bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) N/A - MGD, GEC, EEC (RE) 17.66 - 18.18 at (45° - 20°) - SSC 18.5 Wide ScanSAR Mode ID: WS Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: [273-196] x 208 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] N/A - MGD, GEC, EEC (RE)[Ground range] 35 - SSC[Slant range] 1.75 - 3.18 (depending on range bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) N/A - MGD, GEC, EEC (RE) 39 - SSC 38.27 Spotlight Single Mode ID: SL-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 10 x 10 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 1.55 - 3.43 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 3.51 - 5.43 at (55° - 20°) - SSC[Slant range] 1.18 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 1.56 - 2.9 at (55° - 20°) - MGD, GEC, EEC (RE) 3.51 - 5.4 at (55° - 20°) - SSC 1.46 Spotlight Dual Mode ID: SL-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 10 x 10 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 3.09 - 3.5 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 4.98 - 7.63 at (55° - 20°) - SSC[Slant range] 1.17 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 3.53 - MGD, GEC, EEC (RE) 4.99 - 7.64 at (55° - 20°) - SSC 3.1 HR Spotlight Single Mode ID: HS-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 10-6 x 5 (depending on incident angle) Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 1 - 1.76 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 2.83 - 3.11 at (55° - 20°) - SSC[Slant range] 0.6 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 1 - 1.49 at (55 °- 20°) - MGD, GEC, EEC (RE) 2.83 - 3.13 at (55° - 20°) - SSC 1.05 HR Spotlight Dual Mode ID: HS-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 10 x 5 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 2 - 3.5 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 4 - 6.2 at (55° - 20°) - SSC[Slant range] 1.17 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 2.38 - 2.93 at (55° - 20°) - MGD, GEC, EEC (RE) 4 - 6.25 at (55° - 20°) - SSC 2.16 Staring Spotlight Mode ID: ST Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: [9-4.6] x [2.7-3.6] Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 0.96 - 1.78 at (45°- 20°) - MGD, GEC, EEC (RE)[Ground range] 0.97 - 1.78 at (45°-20°) - SSC[Slant range] 0.59 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 0.38 - 0.7 at (45°-20°) - MGD, GEC, EEC (RE) 0.97 - 1.42 at (45°-20°) - SSC 0.22 All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. For archive data, the user is invited to search PAZ products by using the USP (User Service Provider) web portal (http://www.geos.hisdesat.es/) (self registration required) in order to verify the availability over the Area of Interest in the Time of Interest.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway.
The PAZ ESA archive collection consists of PAZ Level 1 data previously requested by ESA supported projects over their areas of interest around the world and, as a consequence, the products are scattered and dispersed worldwide and in different time windows. The dataset regularly grows as ESA collects new products over the years. Available modes are: • StripMap mode (SM): SSD less than 3m for a scene 30km x 50km in single polarization or 15km x 50km in dual polarisation • ScanSAR mode (SC): the scene is 100 x 150 km2, SSD less than 18m in signle pol only • Wide ScanSAR mode (WS): single polarisation only, with SS less than 40m and scene size of 270 x 200 km2 • Spotlight modes (SL): SSD less than 2m for a scene 10km x 10km, both single and dual polarization are available • High Resolution Spotlight mode (HS): in both single and dual polarisation, the scene is 10x5 km2, SSD less than 1m • Staring Spotlight mode (ST): SSD is 25cm, the scene size is 4 x 4 km2, in single polarisation only. The available geometric projections are: • Single Look Slant Range Complex (SSC): single look product, no geocoding, no radiometric artifact included, the pixel spacing is equidistant in azimuth and in ground range • Multi Look Ground Range Detected (MGD): detected multi look product, simple polynomial slant-to-ground projection is performed in range, no image rotation to a map coordinate system is performed • Geocoded Ellipsoid Corrected (GEC): multi look detected product, projected and re-sampled to the WGS84 reference ellipsoid with no terrain corrections • Enhanced Ellipsoid Corrected (EEC): multi look detected product, projected and re-sampled to the WGS84 reference ellipsoid, the image distortions caused by varying terrain height are corrected using a DEM The following table summarises the offered product types EO-SIP product type Operation Mode Geometric Projection PSP_SM_SSC Stripmap (SM) Single Look Slant Range Complex (SSC) PSP_SM_MGD Stripmap (SM) Multi Look Ground Range Detected (MGD) PSP_SM_GEC Stripmap (SM) Geocoded Ellipsoid Corrected (GEC) PSP_SM_EEC Stripmap (SM) Enhanced Ellipsoid Corrected (EEC) PSP_SC_MGD ScanSAR (SC) Single Look Slant Range Complex (SSC) PSP_SC_GEC ScanSAR (SC) Multi Look Ground Range Detected (MGD) PSP_SC_EEC ScanSAR (SC) Geocoded Ellipsoid Corrected (GEC) PSP_SC_SSC ScanSAR (SC) Enhanced Ellipsoid Corrected (EEC) PSP_SL_SSC Spotlight (SL) Single Look Slant Range Complex (SSC) PSP_SL_MGD Spotlight (SL) Multi Look Ground Range Detected (MGD) PSP_SL_GEC Spotlight (SL) Geocoded Ellipsoid Corrected (GEC) PSP_SL_EEC Spotlight (SL) Enhanced Ellipsoid Corrected (EEC) PSP_HS_SSC High Resolution Spotlight (HS) Single Look Slant Range Complex (SSC) PSP_HS_MGD High Resolution Spotlight (HS) Multi Look Ground Range Detected (MGD) PSP_HS_GEC High Resolution Spotlight (HS) Geocoded Ellipsoid Corrected (GEC) PSP_HS_EEC High Resolution Spotlight (HS) Enhanced Ellipsoid Corrected (EEC) PSP_ST_SSC Staring Spotlight (ST) Single Look Slant Range Complex (SSC) PSP_ST_MGD Staring Spotlight (ST) Multi Look Ground Range Detected (MGD) PSP_ST_GEC Staring Spotlight (ST) Geocoded Ellipsoid Corrected (GEC) PSP_ST_EEC Staring Spotlight (ST) Enhanced Ellipsoid Corrected (EEC) PSP_WS_SSC Wide ScanSAR (WS) Single Look Slant Range Complex (SSC) PSP_WS_MGD Wide ScanSAR (WS) Multi Look Ground Range Detected (MGD) PSP_WS_GEC Wide ScanSAR (WS) Geocoded Ellipsoid Corrected (GEC) PSP_WS_EEC Wide ScanSAR (WS) Enhanced Ellipsoid Corrected (EEC)
PAZ instrument data and derived products (levels 1-2).
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual total students amount from 1987 to 2023 for La Paz Intermediate
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the La Paz County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of La Paz County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of La Paz County was 16,710, a 1.06% increase year-by-year from 2022. Previously, in 2022, La Paz County population was 16,535, an increase of 0.92% compared to a population of 16,385 in 2021. Over the last 20 plus years, between 2000 and 2023, population of La Paz County decreased by 2,869. In this period, the peak population was 21,257 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for La Paz County Population by Year. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed Persons in La Paz County, AZ (LAUCN040120000000005) from Jan 1990 to Apr 2025 about La Paz County, AZ; AZ; household survey; employment; persons; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Per Capita Personal Income in La Paz County, AZ (PCPI04012) from 1983 to 2023 about La Paz County, AZ; AZ; personal income; per capita; personal; income; and USA.
This dataset provides information about the number of properties, residents, and average property values for Fuente De Paz cross streets in Rancho Murieta, CA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Paz Oil Company reported ILS10.49B in Assets for its fiscal quarter ending in December of 2024. Data for Paz Oil Company | PZOL - Assets including historical, tables and charts were last updated by Trading Economics this last July in 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Paz Oil Company reported ILS291M in EBITDA for its fiscal quarter ending in December of 2024. Data for Paz Oil Company | PZOL - Ebitda including historical, tables and charts were last updated by Trading Economics this last July in 2025.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate in La Paz County, AZ (AZLAPA2URN) from Jan 1990 to Apr 2025 about La Paz County, AZ; AZ; unemployment; rate; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CPAZMAL: Cryosphere PAZ satellite MAchine Learning
The aim of this dataset is to serve as a foundation for machine learning in multi-class classification, specifically in mountainous regions. It comprises descending images acquired by the PAZ X-band satellite, focusing on the Mont Blanc region during the period from January 2020 to November 2021, totaling 56 acquisitions.
The time series is divided into two sub-sections:
From January 2020 to 8th January 2021 included: dual polarisation HH and HV,
After 8th January 2021: single polarisation HH.
The datas are divided into 8 classes:
Hanging Glacier (HAG)
Ice Aperon (ICA)
Ablation area
Accumulation area
Rock
Plain
Forest
City
In each classe, between 4 to 10 groups or distinct areas, where their complete description (position, aspect, elevation, ...) can be found in the desc_topo_areas.png file
We provide code that directly extracts temporal or spatial datasets, consisting of homogeneous windows paired with respective labels.
rqtemp = "classe in ['ICA','HAG','ABL','ACC','FOR','CIT','ROC','PLA'] & date < '2021-01-01'" cdlf = Dataset_tiff2hdf5 ( path_to_folder_extracted, different_group=True, n_jobs=1, outpath="path_to_dataset.h5", extension="temporal" ) cdlf.extract_data(rqtemp, polarisation="HH", winsize=7, save=True)
( x, y, gr, org, _, ) = load_h5(path_to_dataset.h5)
An example of how to use it can be found at Github.
The authors would like to thank the Spanish Instituto Nacional de Tecnica Aerospacial (INTA) for the PAZ images (Project AO-001-051)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the La Paz, IN population pyramid, which represents the La Paz population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for La Paz Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual total classroom teachers amount from 1990 to 2023 for La Paz Intermediate
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Paz Oil Company 매상 - 현재 값, 이력 데이터, 예측, 통계, 차트 및 경제 달력 - Jul 2025.Data for Paz Oil Company | 매상 including historical, tables and charts were last updated by Trading Economics this last July in 2025.
Financial overview and grant giving statistics of Paz Family Foundation
The volume of cargo handled in the port of La Paz in the Mexican state of Baja California Sur amounted to approximately 210,000 metric tons in 2022, up from 170,000 metric tons a year earlier.
This dataset provides information about the number of properties, residents, and average property values for Paz Place cross streets in Pensacola, FL.
PAZ Image Products can be acquired in 8 image modes with flexible resolutions (from 1 m to 40 m) and scene sizes. Thanks to different polarimetric combinations and processing levels the delivered imagery can be tailored specifically to meet the requirements of the application. Available modes are: • StripMap mode (SM) in single and dual polarisation: The ground swath is illuminated with a continuous train of pulses while the antenna beam is pointed to a fixed angle, both in elevation and in azimuth. • ScanSAR mode (SC) in single polarisation: the swath width is increased respecting to the StripMap mode, it is composed of four different sub-swaths, which are obtained by antenna steering in elevation direction. • Wide ScanSAR mode (WS), in single polarisation: the usage of six sub-swaths allows to obtain a higher swath coverage product. • Spotlight modes: in single and dual polarisation: Spotlight modes take advantage of the beam steering capability in the azimuth plane to illuminate for a longer time the area of interest: a sensible improvement of the azimuth resolution is achieved at the expense of a shorter scene size. Spotlight mode (SL) is designed to maximise the azimuth scene extension at the expense of the spatial resolution, and High Resolution Spotlight mode (HS) is designed to maximize the spatial resolutions at the expense of the scene extension. • Staring Spotlight mode (ST), in single polarisation: The virtual rotation point coincides with the center of the beam: the image length in the flight direction is constrained by the projection on- ground of the azimuth beamwidth and it leads to a target azimuth illumination time increment and to achieve the best azimuth resolution. There are two main classes of products: • Spatially Enhanced products (SE): designed with the target of maximize the spatial resolution in pixels with squared size, so the larger resolution value of azimuth or ground range determines the square pixel size, and the smaller resolution value is adjusted to this size and the corresponding reduction of the bandwidth is used for speckle reduction. • Radiometrically Enhanced products (RE): designed with the target of maximize the radiometry, so the range and azimuth resolutions are intentionally decreased to significantly reduce speckle by averaging several looks. The following geometric projections are offered: • Single Look Slant Range Complex (SSC): single look product of the focused radar signal: the pixels are spaced equidistant in azimuth and in slant range. No geocoding is available, no radiometric artifacts included. Product delivered in the DLR-defined binary COSAR format. The SSC product is intended for applications that require the full bandwidth and phase information, e.g. for SAR interferometry and polarimetry. • Multi Look Ground Range Detected (MGD): detected multi look product in GeoTiff format with reduced speckle and approximately square resolution cells on ground. The image coordinates are oriented along flight direction and along ground range; the pixel spacing is equidistant in azimuth and in ground range. A simple polynomial slant to ground projection is performed in range using a WGS84 ellipsoid and an average, constant terrain height parameter. No image rotation to a map coordinate system is performed and interpolation artifacts are thus avoided. • Geocoded Ellipsoid Corrected (GEC): multi look detected product in GeoTiff format. It is projected and re-sampled to the WGS84 reference ellipsoid assuming one average terrain height. No terrain correction performed. UTM is the standard projection, for polar regions UPS is applied. • Enhanced Ellipsoid Corrected (EEC): multi look detected product in GeoTiff format. It is projected and re-sampled to the WGS84 reference ellipsoid. The image distortions caused by varying terrain height are corrected using an external DEM; therefore the pixel localization in these products is highly accurate. UTM is the standard projection, for polar regions UPS is applied. StripMap Single Mode ID: SM-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 30 x 50 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 2.99 - 3.52 at (45° - 20°) - MGD, GEC, EEC (RE)[Ground range] 6.53 - 7.65 at (45° - 20°) - SSC[Slant range] 1.1 (150 MHz bandwidth) 1.7 (100 MHz bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 3.05 - MGD, GEC, EEC (RE) 6.53 - 7.60 at (45° - 20°) - SSC 3.01 StripMap Dual Mode ID: SM-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 15 x 50 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 6 - MGD, GEC, EEC (RE)[Ground range] 7.51 - 10.43 at (45° - 20°) - SSC[Slant range] 1.18 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 6.11 - MGD, GEC, EEC (RE) 7.52 - 10.4 at (45° - 20°) - SSC ScanSAR Mode ID: SC Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 100 x 150 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] N/A - MGD, GEC, EEC (RE)[Ground range] 16.79 - 18.19 at (45° - 20°) - SSC[Slant range] 1.17 - 3.4 (depending on range bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) N/A - MGD, GEC, EEC (RE) 17.66 - 18.18 at (45° - 20°) - SSC 18.5 Wide ScanSAR Mode ID: WS Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: [273-196] x 208 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] N/A - MGD, GEC, EEC (RE)[Ground range] 35 - SSC[Slant range] 1.75 - 3.18 (depending on range bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) N/A - MGD, GEC, EEC (RE) 39 - SSC 38.27 Spotlight Single Mode ID: SL-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 10 x 10 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 1.55 - 3.43 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 3.51 - 5.43 at (55° - 20°) - SSC[Slant range] 1.18 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 1.56 - 2.9 at (55° - 20°) - MGD, GEC, EEC (RE) 3.51 - 5.4 at (55° - 20°) - SSC 1.46 Spotlight Dual Mode ID: SL-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 10 x 10 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 3.09 - 3.5 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 4.98 - 7.63 at (55° - 20°) - SSC[Slant range] 1.17 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 3.53 - MGD, GEC, EEC (RE) 4.99 - 7.64 at (55° - 20°) - SSC 3.1 HR Spotlight Single Mode ID: HS-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 10-6 x 5 (depending on incident angle) Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 1 - 1.76 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 2.83 - 3.11 at (55° - 20°) - SSC[Slant range] 0.6 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 1 - 1.49 at (55 °- 20°) - MGD, GEC, EEC (RE) 2.83 - 3.13 at (55° - 20°) - SSC 1.05 HR Spotlight Dual Mode ID: HS-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 10 x 5 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 2 - 3.5 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 4 - 6.2 at (55° - 20°) - SSC[Slant range] 1.17 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 2.38 - 2.93 at (55° - 20°) - MGD, GEC, EEC (RE) 4 - 6.25 at (55° - 20°) - SSC 2.16 Staring Spotlight Mode ID: ST Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: [9-4.6] x [2.7-3.6] Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 0.96 - 1.78 at (45°- 20°) - MGD, GEC, EEC (RE)[Ground range] 0.97 - 1.78 at (45°-20°) - SSC[Slant range] 0.59 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 0.38 - 0.7 at (45°-20°) - MGD, GEC, EEC (RE) 0.97 - 1.42 at (45°-20°) - SSC 0.22 All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. For archive data, the user is invited to search PAZ products by using the USP (User Service Provider) web portal (http://www.geos.hisdesat.es/) (self registration required) in order to verify the availability over the Area of Interest in the Time of Interest.