31 datasets found
  1. Poverty rate of Asian-Americans in the U.S., by Asian heritage groups 2010

    • statista.com
    Updated Jun 19, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2012). Poverty rate of Asian-Americans in the U.S., by Asian heritage groups 2010 [Dataset]. https://www.statista.com/statistics/233830/poverty-rate-of-asian-americans-in-the-us/
    Explore at:
    Dataset updated
    Jun 19, 2012
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2010
    Area covered
    United States
    Description

    This statistic shows the percentage of Asian-American adults living in poverty in the United States, as differentiated by specific Asian heritage groups in 2010. 15 percent of Korean-Americans lived in poverty in the United States as of 2010.

  2. U.S. poverty rate 2024, by race and ethnicity

    • statista.com
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 2024, by race and ethnicity [Dataset]. https://www.statista.com/statistics/200476/us-poverty-rate-by-ethnic-group/
    Explore at:
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.

  3. The NSDUH Report: Need for and Receipt of Substance Use Treatment among...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Sep 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Substance Abuse and Mental Health Services Administration (2025). The NSDUH Report: Need for and Receipt of Substance Use Treatment among Asian Americans and Pacific Islanders [Dataset]. https://catalog.data.gov/dataset/the-nsduh-report-need-for-and-receipt-of-substance-use-treatment-among-asian-americans-and
    Explore at:
    Dataset updated
    Sep 6, 2025
    Dataset provided by
    Substance Abuse and Mental Health Services Administrationhttps://www.samhsa.gov/
    Description

    This report uses 2003 to 2011 National Survey on Drug Use and Health (NSDUH) to assess past year need for and receipt of alcohol use treatment and illicit drug use treatment among Asian Americans and Pacific Islanders aged 12 or older in comparison to persons of other racial and ethnic groups. Results are shown by age group, gender, federal poverty level and health insurance coverage status.

  4. Data from: Lost on the frontline, and lost in the data: COVID-19 deaths...

    • figshare.com
    zip
    Updated Jul 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loraine Escobedo (2022). Lost on the frontline, and lost in the data: COVID-19 deaths among Filipinx healthcare workers in the United States [Dataset]. http://doi.org/10.6084/m9.figshare.20353368.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 22, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Loraine Escobedo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20

  5. U.S. poverty rate 1990-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 1990-2024 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, approximately 10.6 percent of the population was living below the national poverty line in the United States. This reflected a 0.5 percentage point decrease from the previous year. Most recently, poverty levels in the country peaked in 2010 at just over 15 percent. Poverty in the U.S. States The number of people living in poverty in the U.S. as well as poverty rates, vary greatly from state to state. With their large populations, California and Texas led that charts in terms of the size of their impoverished residents. On the other hand, Louisiana had the highest rates of poverty, standing at 20 percent in 2024. The state with the lowest poverty rate was New Hampshire at 5.9 percent. Vulnerable populations The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the highest levels of poverty in 2024, with about 19 percent earning an income below the official threshold. In comparison, only about 7.5 percent of the White (non-Hispanic) and Asian populations were living below the poverty line. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2024. Child poverty peaked in 1993 with 22.7 percent of children living in poverty. Despite fluctuations, in 2024, poverty among minors reached its lowest level in decades, falling to 14.3 percent.

  6. l

    Poverty Rate

    • geohub.lacity.org
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Poverty Rate [Dataset]. https://geohub.lacity.org/datasets/lacounty::poverty-rate
    Explore at:
    Dataset updated
    Dec 22, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail. The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts. The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate. More information about these data are available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review our FAQs. Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data. Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR)..1. Population Density2. Poverty Rate3. Median Household income4. Education Attainment5. English Speaking Ability6. Household without Internet Access7. Non-Hispanic White Population8. Non-Hispanic African-American Population9. Non-Hispanic Asian Population10. Hispanic Population

  7. a

    2022 Population and Poverty at Split Tract

    • hub.arcgis.com
    • geohub.lacity.org
    • +2more
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2022 Population and Poverty at Split Tract [Dataset]. https://hub.arcgis.com/maps/lacounty::2022-population-and-poverty-at-split-tract/about
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2022 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP22: 2022 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2022) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP22CSA: 2020 census tract with 2022 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP22_AGE_0_4: 2022 population 0 to 4 years oldPOP22_AGE_5_9: 2022 population 5 to 9 years old POP22_AGE_10_14: 2022 population 10 to 14 years old POP22_AGE_15_17: 2022 population 15 to 17 years old POP22_AGE_18_19: 2022 population 18 to 19 years old POP22_AGE_20_44: 2022 population 20 to 24 years old POP22_AGE_25_29: 2022 population 25 to 29 years old POP22_AGE_30_34: 2022 population 30 to 34 years old POP22_AGE_35_44: 2022 population 35 to 44 years old POP22_AGE_45_54: 2022 population 45 to 54 years old POP22_AGE_55_64: 2022 population 55 to 64 years old POP22_AGE_65_74: 2022 population 65 to 74 years old POP22_AGE_75_84: 2022 population 75 to 84 years old POP22_AGE_85_100: 2022 population 85 years and older POP22_WHITE: 2022 Non-Hispanic White POP22_BLACK: 2022 Non-Hispanic African AmericanPOP22_AIAN: 2022 Non-Hispanic American Indian or Alaska NativePOP22_ASIAN: 2022 Non-Hispanic Asian POP22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific IslanderPOP22_HISPANIC: 2022 HispanicPOP22_MALE: 2022 Male POP22_FEMALE: 2022 Female POV22_WHITE: 2022 Non-Hispanic White below 100% Federal Poverty Level POV22_BLACK: 2022 Non-Hispanic African American below 100% Federal Poverty Level POV22_AIAN: 2022 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV22_ASIAN: 2022 Non-Hispanic Asian below 100% Federal Poverty Level POV22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV22_HISPANIC: 2022 Hispanic below 100% Federal Poverty Level POV22_TOTAL: 2022 Total population below 100% Federal Poverty Level POP22_TOTAL: 2022 Total PopulationAREA_SQMil: Area in square mile.POP22_DENSITY: Population per square mile.POV22_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2022. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  8. l

    2014 Population and Poverty at Split Tract

    • data.lacounty.gov
    • geohub.lacity.org
    • +3more
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2014 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/maps/lacounty::2014-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2014 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP14: 2014 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2014) CT10FIP14: 2010 census tract with 2014 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP14_AGE_0_4: 2014 population 0 to 4 years oldPOP14_AGE_5_9: 2014 population 5 to 9 years old POP14_AGE_10_14: 2014 population 10 to 14 years old POP14_AGE_15_17: 2014 population 15 to 17 years old POP14_AGE_18_19: 2014 population 18 to 19 years old POP14_AGE_20_44: 2014 population 20 to 24 years old POP14_AGE_25_29: 2014 population 25 to 29 years old POP14_AGE_30_34: 2014 population 30 to 34 years old POP14_AGE_35_44: 2014 population 35 to 44 years old POP14_AGE_45_54: 2014 population 45 to 54 years old POP14_AGE_55_64: 2014 population 55 to 64 years old POP14_AGE_65_74: 2014 population 65 to 74 years old POP14_AGE_75_84: 2014 population 75 to 84 years old POP14_AGE_85_100: 2014 population 85 years and older POP14_WHITE: 2014 Non-Hispanic White POP14_BLACK: 2014 Non-Hispanic African AmericanPOP14_AIAN: 2014 Non-Hispanic American Indian or Alaska NativePOP14_ASIAN: 2014 Non-Hispanic Asian POP14_HNPI: 2014 Non-Hispanic Hawaiian Native or Pacific IslanderPOP14_HISPANIC: 2014 HispanicPOP14_MALE: 2014 Male POP14_FEMALE: 2014 Female POV14_WHITE: 2014 Non-Hispanic White below 100% Federal Poverty Level POV14_BLACK: 2014 Non-Hispanic African American below 100% Federal Poverty Level POV14_AIAN: 2014 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV14_ASIAN: 2014 Non-Hispanic Asian below 100% Federal Poverty Level POV14_HNPI: 2014 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV14_HISPANIC: 2014 Hispanic below 100% Federal Poverty Level POV14_TOTAL: 2014 Total population below 100% Federal Poverty Level POP14_TOTAL: 2014 Total PopulationAREA_SQMIL: Area in square milePOP14_DENSITY: Population per square mile.POV14_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2014. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  9. l

    2016 Population and Poverty at Split Tract

    • geohub.lacity.org
    • data.lacounty.gov
    • +1more
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2016 Population and Poverty at Split Tract [Dataset]. https://geohub.lacity.org/datasets/lacounty::2016-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2016 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP16: 2016 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2016) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP16CSA: 2010 census tract with 2016 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP16_AGE_0_4: 2016 population 0 to 4 years oldPOP16_AGE_5_9: 2016 population 5 to 9 years old POP16_AGE_10_14: 2016 population 10 to 14 years old POP16_AGE_15_17: 2016 population 15 to 17 years old POP16_AGE_18_19: 2016 population 18 to 19 years old POP16_AGE_20_44: 2016 population 20 to 24 years old POP16_AGE_25_29: 2016 population 25 to 29 years old POP16_AGE_30_34: 2016 population 30 to 34 years old POP16_AGE_35_44: 2016 population 35 to 44 years old POP16_AGE_45_54: 2016 population 45 to 54 years old POP16_AGE_55_64: 2016 population 55 to 64 years old POP16_AGE_65_74: 2016 population 65 to 74 years old POP16_AGE_75_84: 2016 population 75 to 84 years old POP16_AGE_85_100: 2016 population 85 years and older POP16_WHITE: 2016 Non-Hispanic White POP16_BLACK: 2016 Non-Hispanic African AmericanPOP16_AIAN: 2016 Non-Hispanic American Indian or Alaska NativePOP16_ASIAN: 2016 Non-Hispanic Asian POP16_HNPI: 2016 Non-Hispanic Hawaiian Native or Pacific IslanderPOP16_HISPANIC: 2016 HispanicPOP16_MALE: 2016 Male POP16_FEMALE: 2016 Female POV16_WHITE: 2016 Non-Hispanic White below 100% Federal Poverty Level POV16_BLACK: 2016 Non-Hispanic African American below 100% Federal Poverty Level POV16_AIAN: 2016 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV16_ASIAN: 2016 Non-Hispanic Asian below 100% Federal Poverty Level POV16_HNPI: 2016 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV16_HISPANIC: 2016 Hispanic below 100% Federal Poverty Level POV16_TOTAL: 2016 Total population below 100% Federal Poverty Level POP16_TOTAL: 2016 Total PopulationAREA_SQMIL: Area in square milePOP16_DENSITY: Population per square mile.POV16_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2016. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  10. l

    2020 Population and Poverty at Split Tract

    • data.lacounty.gov
    • data-lahub.opendata.arcgis.com
    • +2more
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2020 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/6b4334bfe44e4dfb9d38a674f72f3b92
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2020 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP21: 2020 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2020) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP21CSA: 2020 census tract with 2020 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP20_AGE_0_4: 2020 population 0 to 4 years oldPOP20_AGE_5_9: 2020 population 5 to 9 years old POP20_AGE_10_14: 2020 population 10 to 14 years old POP20_AGE_15_17: 2020 population 15 to 17 years old POP20_AGE_18_19: 2020 population 18 to 19 years old POP20_AGE_20_44: 2020 population 20 to 24 years old POP20_AGE_25_29: 2020 population 25 to 29 years old POP20_AGE_30_34: 2020 population 30 to 34 years old POP20_AGE_35_44: 2020 population 35 to 44 years old POP20_AGE_45_54: 2020 population 45 to 54 years old POP20_AGE_55_64: 2020 population 55 to 64 years old POP20_AGE_65_74: 2020 population 65 to 74 years old POP20_AGE_75_84: 2020 population 75 to 84 years old POP20_AGE_85_100: 2020 population 85 years and older POP20_WHITE: 2020 Non-Hispanic White POP20_BLACK: 2020 Non-Hispanic African AmericanPOP20_AIAN: 2020 Non-Hispanic American Indian or Alaska NativePOP20_ASIAN: 2020 Non-Hispanic Asian POP20_HNPI: 2020 Non-Hispanic Hawaiian Native or Pacific IslanderPOP20_HISPANIC: 2020 HispanicPOP20_MALE: 2020 Male POP20_FEMALE: 2020 Female POV20_WHITE: 2020 Non-Hispanic White below 100% Federal Poverty Level POV20_BLACK: 2020 Non-Hispanic African American below 100% Federal Poverty Level POV20_AIAN: 2020 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV20_ASIAN: 2020 Non-Hispanic Asian below 100% Federal Poverty Level POV20_HNPI: 2020 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV20_HISPANIC: 2020 Hispanic below 100% Federal Poverty Level POV20_TOTAL: 2020 Total population below 100% Federal Poverty Level POP20_TOTAL: 2020 Total PopulationAREA_SQMIL: Area in square milePOP20_DENSITY: Population per square mile.POV20_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019.2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  11. l

    2017 Population and Poverty at Split Tract

    • data.lacounty.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +3more
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2017 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/maps/lacounty::2017-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2017 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP17: 2017 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2017) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP17CSA: 2010 census tract with 2017 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP17_AGE_0_4: 2017 population 0 to 4 years oldPOP17_AGE_5_9: 2017 population 5 to 9 years old POP17_AGE_10_14: 2017 population 10 to 14 years old POP17_AGE_15_17: 2017 population 15 to 17 years old POP17_AGE_18_19: 2017 population 18 to 19 years old POP17_AGE_20_44: 2017 population 20 to 24 years old POP17_AGE_25_29: 2017 population 25 to 29 years old POP17_AGE_30_34: 2017 population 30 to 34 years old POP17_AGE_35_44: 2017 population 35 to 44 years old POP17_AGE_45_54: 2017 population 45 to 54 years old POP17_AGE_55_64: 2017 population 55 to 64 years old POP17_AGE_65_74: 2017 population 65 to 74 years old POP17_AGE_75_84: 2017 population 75 to 84 years old POP17_AGE_85_100: 2017 population 85 years and older POP17_WHITE: 2017 Non-Hispanic White POP17_BLACK: 2017 Non-Hispanic African AmericanPOP17_AIAN: 2017 Non-Hispanic American Indian or Alaska NativePOP17_ASIAN: 2017 Non-Hispanic Asian POP17_HNPI: 2017 Non-Hispanic Hawaiian Native or Pacific IslanderPOP17_HISPANIC: 2017 HispanicPOP17_MALE: 2017 Male POP17_FEMALE: 2017 Female POV17_WHITE: 2017 Non-Hispanic White below 100% Federal Poverty Level POV17_BLACK: 2017 Non-Hispanic African American below 100% Federal Poverty Level POV17_AIAN: 2017 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV17_ASIAN: 2017 Non-Hispanic Asian below 100% Federal Poverty Level POV17_HNPI: 2017 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV17_HISPANIC: 2017 Hispanic below 100% Federal Poverty Level POV17_TOTAL: 2017 Total population below 100% Federal Poverty Level POP17_TOTAL: 2017 Total PopulationAREA_SQMIL: Area in square milePOP17_DENSITY: Population per square mile.POV17_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2017. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  12. l

    2018 Population and Poverty at Split Tract

    • geohub.lacity.org
    • data.lacounty.gov
    • +1more
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2018 Population and Poverty at Split Tract [Dataset]. https://geohub.lacity.org/datasets/lacounty::2018-population-and-poverty-at-split-tract/about
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2018 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP18: 2018 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2018) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP18CSA: 2010 census tract with 2018 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP18_AGE_0_4: 2018 population 0 to 4 years oldPOP18_AGE_5_9: 2018 population 5 to 9 years old POP18_AGE_10_14: 2018 population 10 to 14 years old POP18_AGE_15_17: 2018 population 15 to 17 years old POP18_AGE_18_19: 2018 population 18 to 19 years old POP18_AGE_20_44: 2018 population 20 to 24 years old POP18_AGE_25_29: 2018 population 25 to 29 years old POP18_AGE_30_34: 2018 population 30 to 34 years old POP18_AGE_35_44: 2018 population 35 to 44 years old POP18_AGE_45_54: 2018 population 45 to 54 years old POP18_AGE_55_64: 2018 population 55 to 64 years old POP18_AGE_65_74: 2018 population 65 to 74 years old POP18_AGE_75_84: 2018 population 75 to 84 years old POP18_AGE_85_100: 2018 population 85 years and older POP18_WHITE: 2018 Non-Hispanic White POP18_BLACK: 2018 Non-Hispanic African AmericanPOP18_AIAN: 2018 Non-Hispanic American Indian or Alaska NativePOP18_ASIAN: 2018 Non-Hispanic Asian POP18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific IslanderPOP18_HISPANIC: 2018 HispanicPOP18_MALE: 2018 Male POP18_FEMALE: 2018 Female POV18_WHITE: 2018 Non-Hispanic White below 100% Federal Poverty Level POV18_BLACK: 2018 Non-Hispanic African American below 100% Federal Poverty Level POV18_AIAN: 2018 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV18_ASIAN: 2018 Non-Hispanic Asian below 100% Federal Poverty Level POV18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV18_HISPANIC: 2018 Hispanic below 100% Federal Poverty Level POV18_TOTAL: 2018 Total population below 100% Federal Poverty Level POP18_TOTAL: 2018 Total PopulationAREA_SQMIL: Area in square milePOP18_DENSITY: Population per square mile.POV18_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  13. l

    2019 Population and Poverty at Split Tract

    • geohub.lacity.org
    • data.lacounty.gov
    • +2more
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2019 Population and Poverty at Split Tract [Dataset]. https://geohub.lacity.org/maps/lacounty::2019-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2019 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP19: 2019 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2019) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP19CSA: 2010 census tract with 2019 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP19_AGE_0_4: 2019 population 0 to 4 years oldPOP19_AGE_5_9: 2019 population 5 to 9 years old POP19_AGE_10_14: 2019 population 10 to 14 years old POP19_AGE_15_17: 2019 population 15 to 17 years old POP19_AGE_18_19: 2019 population 18 to 19 years old POP19_AGE_20_44: 2019 population 20 to 24 years old POP19_AGE_25_29: 2019 population 25 to 29 years old POP19_AGE_30_34: 2019 population 30 to 34 years old POP19_AGE_35_44: 2019 population 35 to 44 years old POP19_AGE_45_54: 2019 population 45 to 54 years old POP19_AGE_55_64: 2019 population 55 to 64 years old POP19_AGE_65_74: 2019 population 65 to 74 years old POP19_AGE_75_84: 2019 population 75 to 84 years old POP19_AGE_85_100: 2019 population 85 years and older POP19_WHITE: 2019 Non-Hispanic White POP19_BLACK: 2019 Non-Hispanic African AmericanPOP19_AIAN: 2019 Non-Hispanic American Indian or Alaska NativePOP19_ASIAN: 2019 Non-Hispanic Asian POP19_HNPI: 2019 Non-Hispanic Hawaiian Native or Pacific IslanderPOP19_HISPANIC: 2019 HispanicPOP19_MALE: 2019 Male POP19_FEMALE: 2019 Female POV19_WHITE: 2019 Non-Hispanic White below 100% Federal Poverty Level POV19_BLACK: 2019 Non-Hispanic African American below 100% Federal Poverty Level POV19_AIAN: 2019 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV19_ASIAN: 2019 Non-Hispanic Asian below 100% Federal Poverty Level POV19_HNPI: 2019 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV19_HISPANIC: 2019 Hispanic below 100% Federal Poverty Level POV19_TOTAL: 2019 Total population below 100% Federal Poverty Level POP19_TOTAL: 2019 Total PopulationAREA_SQMIL: Area in square milePOP19_DENSITY: Population per square mile.POV19_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  14. l

    Census 2020 SRR and Demographic Charcateristics

    • data.lacounty.gov
    Updated Dec 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Census 2020 SRR and Demographic Charcateristics [Dataset]. https://data.lacounty.gov/maps/e137518f57cf4dbc96ac7139a224631e
    Explore at:
    Dataset updated
    Dec 22, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.

  15. a

    2023 Population and Poverty by Split Tract

    • egis-lacounty.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2023 Population and Poverty by Split Tract [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/2023-population-and-poverty-by-split-tract
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2023 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries as of July 1, 2023. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/)released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Fields:CT20: 2020 Census tractFIP22: 2023 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2023) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP23CSA: 2020 census tract with 2023 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP23_AGE_0_4: 2023 population 0 to 4 years oldPOP23_AGE_5_9: 2023 population 5 to 9 years old POP23_AGE_10_14: 2023 population 10 to 14 years old POP23_AGE_15_17: 2022 population 15 to 17 years old POP23_AGE_18_19: 2023 population 18 to 19 years old POP23_AGE_20_44: 2023 population 20 to 24 years old POP23_AGE_25_29: 2023 population 25 to 29 years old POP23_AGE_30_34: 2023 population 30 to 34 years old POP23_AGE_35_44: 2023 population 35 to 44 years old POP23_AGE_45_54: 2023 population 45 to 54 years old POP23_AGE_55_64: 2023 population 55 to 64 years old POP23_AGE_65_74: 2023 population 65 to 74 years old POP23_AGE_75_84: 2023 population 75 to 84 years old POP23_AGE_85_100: 2023 population 85 years and older POP23_WHITE: 2023 Non-Hispanic White POP23_BLACK: 2023 Non-Hispanic African AmericanPOP23_AIAN: 2023 Non-Hispanic American Indian or Alaska NativePOP23_ASIAN: 2023 Non-Hispanic Asian POP23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific IslanderPOP23_HISPANIC: 2023 HispanicPOP23_MALE: 2023 Male POP23_FEMALE: 2023 Female POV23_WHITE: 2023 Non-Hispanic White below 100% Federal Poverty Level POV23_BLACK: 2023 Non-Hispanic African American below 100% Federal Poverty Level POV23_AIAN: 2023 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV23_ASIAN: 2023 Non-Hispanic Asian below 100% Federal Poverty Level POV23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV23_HISPANIC: 2023 Hispanic below 100% Federal Poverty Level POV23_TOTAL: 2023 Total population below 100% Federal Poverty Level POP23_TOTAL: 2023 Total PopulationAREA_SQMil: Area in square mile.POP23_DENSITY: 2023 Population per square mile.POV23_PERCENT: 2023 Poverty rate/percentage.How this data created?Population by age groups, ethnic groups and gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Notes:1. Population and poverty data estimated as of July 1, 2023. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundaries are as of July 1, 2023.

  16. l

    2012 Population and Poverty at Split Tract

    • data.lacounty.gov
    • geohub.lacity.org
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2012 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2012-population-and-poverty-at-split-tract-
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2012 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP12: 2012 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2012) CT10FIP12: 2010 census tract with 2012 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP12_AGE_0_4: 2012 population 0 to 4 years oldPOP12_AGE_5_9: 2012 population 5 to 9 years old POP12_AGE_10_14: 2012 population 10 to 14 years old POP12_AGE_15_17: 2012 population 15 to 17 years old POP12_AGE_18_19: 2012 population 18 to 19 years old POP12_AGE_20_44: 2012 population 20 to 24 years old POP12_AGE_25_29: 2012 population 25 to 29 years old POP12_AGE_30_34: 2012 population 30 to 34 years old POP12_AGE_35_44: 2012 population 35 to 44 years old POP12_AGE_45_54: 2012 population 45 to 54 years old POP12_AGE_55_64: 2012 population 55 to 64 years old POP12_AGE_65_74: 2012 population 65 to 74 years old POP12_AGE_75_84: 2012 population 75 to 84 years old POP12_AGE_85_100: 2012 population 85 years and older POP12_WHITE: 2012 Non-Hispanic White POP12_BLACK: 2012 Non-Hispanic African AmericanPOP12_AIAN: 2012 Non-Hispanic American Indian or Alaska NativePOP12_ASIAN: 2012 Non-Hispanic Asian POP12_HNPI: 2012 Non-Hispanic Hawaiian Native or Pacific IslanderPOP12_HISPANIC: 2012 HispanicPOP12_MALE: 2012 Male POP12_FEMALE: 2012 Female POV12_WHITE: 2012 Non-Hispanic White below 100% Federal Poverty Level POV12_BLACK: 2012 Non-Hispanic African American below 100% Federal Poverty Level POV12_AIAN: 2012 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV12_ASIAN: 2012 Non-Hispanic Asian below 100% Federal Poverty Level POV12_HNPI: 2012 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV12_HISPANIC: 2012 Hispanic below 100% Federal Poverty Level POV12_TOTAL: 2012 Total population below 100% Federal Poverty Level POP12_TOTAL: 2012 Total PopulationAREA_SQMIL: Area in square milePOP12_DENSITY: Population per square mile.POV12_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2012. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  17. U.S. poverty rate 1990-2023

    • statista.com
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abigail Tierney (2023). U.S. poverty rate 1990-2023 [Dataset]. https://www.statista.com/study/136830/income-and-health-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Abigail Tierney
    Area covered
    United States
    Description

    In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.

  18. 2022 American Community Survey: B17020D | Poverty Status in the Past 12...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2022 American Community Survey: B17020D | Poverty Status in the Past 12 Months by Age (Asian Alone) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2022.B17020D?q=Morrow%20city,%20Georgia%20Mattaponi&t=Age%20and%20Sex:Asian
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  19. 2013 American Community Survey: B17020D | POVERTY STATUS IN THE PAST 12...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2013 American Community Survey: B17020D | POVERTY STATUS IN THE PAST 12 MONTHS BY AGE (ASIAN ALONE) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2013.B17020D
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2013
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2013 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..In data year 2013, there were a series of changes to data collection operations that could have affected some estimates. These changes include the addition of Internet as a mode of data collection, the end of the content portion of Failed Edit Follow-Up interviewing, and the loss of one monthly panel due to the Federal Government shut down in October 2013. For more information, see: User Notes.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2013 American Community Survey

  20. d

    Demographics

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Demographics [Dataset]. https://catalog.data.gov/dataset/demographics-0be32
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Lake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2012). Poverty rate of Asian-Americans in the U.S., by Asian heritage groups 2010 [Dataset]. https://www.statista.com/statistics/233830/poverty-rate-of-asian-americans-in-the-us/
Organization logo

Poverty rate of Asian-Americans in the U.S., by Asian heritage groups 2010

Explore at:
Dataset updated
Jun 19, 2012
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2010
Area covered
United States
Description

This statistic shows the percentage of Asian-American adults living in poverty in the United States, as differentiated by specific Asian heritage groups in 2010. 15 percent of Korean-Americans lived in poverty in the United States as of 2010.

Search
Clear search
Close search
Google apps
Main menu