21 datasets found
  1. 2_1_plan_research_area

    • kaggle.com
    zip
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WOOSUNG YOON (2025). 2_1_plan_research_area [Dataset]. https://www.kaggle.com/datasets/woosungyoon/2-1-plan-research-area
    Explore at:
    zip(73671128 bytes)Available download formats
    Dataset updated
    Jun 28, 2025
    Authors
    WOOSUNG YOON
    Description

    Amazon Geoglyphs Spatial Analysis Dataset

    DATA & Tools

    Data Overview and Sources

    This dataset was constructed for the Phase 2 research described in the write-up document, analyzing the spatial relationships between geoglyphs (ancient earthwork structures) in the Amazon basin and hydrological environments to identify potential geoglyph locations.

    Data sources

    • HydroBASINS: www.hydrosheds.org - Global watershed boundaries
    • GloRiC: www.hydrosheds.org - Global River Classification
    • jqjacobs.net: Archaeogeodesy Placemarks (Amazon geoglyph category extracted from Google Earth KML)

    File Structure

    2_1_plan_research_area/
    ├── scripts/
    │  └── kmz_point_extractor.py   # Data extraction script (Archaeogeodesy KMZ → geoglyph coordinates)
    ├── data/
    │  ├── amazon_basin.gpkg     # Watershed boundaries (HydroBASINS Level 3 Amazon basin)
    │  ├── amazon_gloric.gpkg     # River data (GloRiC clipped to basin extent)
    │  ├── amazon_grid_gloric.gpkg  # Grid statistics (0.5° grid-based river environment statistics)
    │  ├── sites_geoglyphs.gpkg    # Site locations (extracted geoglyph points)
    │  ├── survey_area.gpkg      # Administrative areas (Brazil/Peru/Bolivia states of interest)
    │  └── focus_area.gpkg      # Analysis area (potential geoglyph survey target region)
    └── plan_research_area.qgz     # QGIS project (integrated layer management)
    

    QGIS Processing Workflow

    1. Watershed Boundary Extraction (amazon_basin.gpkg)

    • (1) Vector → Research Tools → Select by Attribute: Select Amazon basin by attributes
    • (2) Export → Save Selected Features As: Save selected features as new layer

    2. River Data Clipping (amazon_gloric.gpkg)

    • (1) Vector → Research Tools → Select by Location: Select GloRiC features intersecting with amazon_basin
    • (2) Export → Save Selected Features As: Save selected river data
    • (3) Vector → Data Management Tools → Add Geometry Attributes: Calculate river length

    3. Grid-based Statistics Generation (amazon_grid_gloric.gpkg)

    • (1) Vector → Research Tools → Create Grid: Create 0.5° interval grid
    • (2) Vector → Research Tools → Select by Location: Select grids contained within amazon_basin
    • (3) Vector → Analysis Tools → Join Attributes by Location (Summary): Calculate river characteristics statistics by grid
      • Aggregation functions: Mean, Standard Deviation
      • Target variables: Temp_min (minimum temperature), CMI_indx (climate moisture index), Log_elev (elevation)

    4. Research Area Definition (survey_area.gpkg)

    • (1) Vector → Research Tools → Select by Attribute: Select Amazon areas of interest from country-level state shapefiles
    • (2) Export → Save Selected Features As: Save selected states as GPKG

    5. Focus Research Area (focus_area.gpkg)

    • (1) Layer → Create Layer → New Shapefile Layer: Create new polygon layer
    • (2) Toggle Editing: Manually create rectangular polygon for potential geoglyph survey

    This dataset serves as the foundation for Phase 2 research utilizing environmental filtering and Sentinel-2 multispectral analysis to identify potential geoglyph locations.

  2. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  3. e

    Average local taxes by assets — Departmental Map 54 Meurthe and Moselle 2015...

    • data.europa.eu
    excel xls, jpeg, pdf +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DELETED DELETED, Average local taxes by assets — Departmental Map 54 Meurthe and Moselle 2015 [Dataset]. https://data.europa.eu/data/datasets/56ef07c6c751df0c9ad6e93b
    Explore at:
    zip(79478), pdf(3588797), excel xls(2660864), jpeg(1251950)Available download formats
    Dataset authored and provided by
    DELETED DELETED
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    Here is an image of the global municipal tax (founcier bati + habitation). Average tax per asset Nancy 2014

    To do it again you will need: — QGIS software (Free: https://www.qgis.org/fr/site/forusers/download.html), — a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) — an export of tax rates (https://www.data.gouv.fr/fr/datasets/impots-locaux/ > Municipal and intercommunal data > Your Department > Local Direct Tax Data 2014 (XLS format)) — data (most days of INSEE here 2012 http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=base-cc-emploi-pop-active-2012)

    Operating Mode: — process your data in your favorite spreadsheet (Excel or OpenOffice Calc) by integrating impot data, and INSEE to pull out the numbers that seem revealing to you — Install QGIS — Open the.qgs of your department

    Add columns — Right click property on the main layer — Go to the field menu (on the left) — Add (via pencil) the desired columns (here average housing tax per asset, average property tax per asset, and the sum of both) — These are reals of precision 2, and length 6 — Register

    Insert data: — Right-click on the “Open attribute table” layer — Select all — Copy — Paste in excel (or openOffice calcs) — Put the ad hoc formulas in excel (SOMME.SI.ENS to recover the rate) — Save the desired tab in CSV DOS with the new values — In QGIS > Menu > Layer > Add a delimited layer of text — Import the CSV

    Present the data: — To simplify I advise you to make a layer by rate, and layers sums. So rots you in three clicks out the image of the desired rate — For each layer (or rate) — Right click properties on the csv layer — Labels to add city name and desired rate — Style for fct coloring of a csv field

    Print the data in pdf: — To print, you need to define a print template — In the menu choose new printing dialer — choose the format (a department in A0 is rather readable) — Add vas legend, scale, and other — Print and here...

    NB: this method creates aberrations: — in the case where the INSEE does not have a number or numbers that have moved a lot since — it is assumed that only assets pay taxes (which is more fair, but not 100 %)

  4. f

    Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods

    • figshare.com
    zip
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab) (2024). Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods [Dataset]. http://doi.org/10.6084/m9.figshare.24975744.v5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    figshare
    Authors
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used to estimate total ephemeral stream length within the Coeur d'Alene, Fort Apache, and Menominee Reservations. It includes data that is publicly available through the USGS "The National Map" (USGS TNM Download v2.0), including NHDPlus High Resolution hydrography data, and Contour (1:24,000-scale) elevation data. It also includes geographic boundaries for the above mentioned Native American Reservations, as well as "eph5ha" raster data (Fesenmyer et al. 2021), which was used to approximate ephemeral stream locations. The remaining layers in the dataset include exported, site-specific NHDPlus hydrography data, and hand-digitized, estimated ephemeral streams, based on the eph5ha raster data. A map PNG of all three reservations is also included, as well as the map file used to create that map image. Lastly, a PDF of the methods used for this mapping project is also attached.

  5. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  6. e

    Local taxes - Departmental map 54 Meurthe et Moselle 2015

    • data.europa.eu
    pdf, zip
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DELETED DELETED (2025). Local taxes - Departmental map 54 Meurthe et Moselle 2015 [Dataset]. https://data.europa.eu/data/datasets/56ed013488ee380d03e1a625?locale=en
    Explore at:
    pdf(2556923), pdf(2546950), zip(393104)Available download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    DELETED DELETED
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    Here is an image of the overall municipal tax rate (foncier bati + habitation, for municipalities and inter-municipalities). http://physaphae.noip.me/Img/2015_Rate_54" alt="Local tax rate 54 of 2015" title="Local tax rate 54 of 2015">

    Given that it is at the departmental mesh, it is not useful to include the departmental rate, and national... That would not be part of the comparison.

    To do it again yourself you will need: - QQGIS software (Free: https://www.qgis.org/en/site/forusers/download.html), - a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) - an export of tax rates (https://www.data.gouv.fr/en/datasets/local taxes/)

    Procedure: Install QGIS Open your department's .qgs

    Add columns - Right click property on the main layer - Go to the fields menu (on the left) - Add (via the pencil) the desired columns (here municipal tax rate, intercommunal built land and housing) - These are reals of a precision 2, and a length 4 - Register

    Insert data: - Right click on the layer "Open attribute table" - Select all - Copy - Paste into excel (or openOffice calcs) - Put the ad hoc formulas in excel (SUM.SI.ENS to recover the rate) - Save the desired tab in CSV DOS with the new values - In QGIS > Menu > Layer > Add a delimited text layer - Import the CSV

    Present the data: - To simplify I advise you to make one layer per rate, and layers are. Thus rots you in three clicks take out the image of the desired rate - For each layer (or rate) - Right click properties on the csv layer - Labels to add the name of the city and the desired rate - Style for coloring in fct of a csv field

    Print the data in pdf: - To print, you need to define a print template - In the menu choose new print dialler - choose the format (a department in A0 is rather readable) - Add vas legend, ladder, and other - Print and voila...

  7. Data from: The Long-Term Agroecosystem Research (LTAR) Network Standard GIS...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). The Long-Term Agroecosystem Research (LTAR) Network Standard GIS Data Layers, 2020 version [Dataset]. https://catalog.data.gov/dataset/the-long-term-agroecosystem-research-ltar-network-standard-gis-data-layers-2020-version-96132
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/

  8. r

    Input data files for habitat network analyses of amphibians in the...

    • researchdata.se
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oskar Kindvall (2024). Input data files for habitat network analyses of amphibians in the Gothenburg region [Dataset]. http://doi.org/10.5878/dn29-z128
    Explore at:
    (20064), (5417426)Available download formats
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    Chalmers University of Technology
    Authors
    Oskar Kindvall
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Gothenburg, Göteborg Municipality, Mölndal Municipality
    Description

    This data package includes two related data files that can be used as input for habitat network analyses on amphibians using a specific habitat network analysis tool (HNAT; v0.1.2-alpha):

    1. AmphibianHabitatNetwork_Parameters.xlsx
    2. BiotopeMap_GothenburgRegion_withPondsRoadsAndBuildings.tif

    HNAT is a plugin for the open-source Geographic Information System QGIS (https://qgis.org/en/site/). HNAT can be downloaded at https://github.com/SMoG-Chalmers/hnat/releases/tag/v0.1.2-alpha. To run the habitat network analyses based on the input data provided in this package one must install the plugin HNAT into QGIS. This software has been created by Chalmers within a research project financed by the Swedish government research council for sustainable development, Formas (FR -2021/0004), within the framework of the national research program "From research to implementation for a sustainable society 2021". The Excel-file contains the parameters for amphibians and the GeoTiff-file is representing a biotope raster map covering the Gothenburg region in western Sweden. SRID=3006 (Sweref99 TM). Pixel size =10x10 metres. The pixel values of the biotope map correspond to the biotope codes listed in the in the parameter file (see column “BiotopeCode”). For each biotope the parameter file holds biotope specific parameter values for two alternative amphibian models denoted “Amphibians_NMDWater_ponds” and Amphibians_NMDWater_ponds_NoFriction”. The two alternative parameter settings can be used to demonstrate the difference in model prediction with or without the assumption that amphibian movements are affected by barrier effects caused by roads, buildings and certain biotopes biotope types. The “NoFriction” version assumes that amphibian dispersal probability declines exponentially with increasing Euclidian distance whereas the other set assumes dispersal to be affected by barriers. Read the readme file for details on each parameter provided in the parameter file.

    The GeoTiff-file is a biotope mape which has been created by combining a couple of publicly available geodata sets. As a base for the biotope map the Swedish land cover map NMD was used (https://geodata.naturvardsverket.se/nedladdning/marktacke/NMD2018/NMD2018_basskikt_ogeneraliserad_Sverige_v1_1.zip). To achieve a greater cartographic representation of small ponds, streams, buildings and transport infrastructure relevant for amphibian dispersal, reproduction and foraging, NMD was complemented by information from a number of vector layers. In total, 20 new biotope classes representing buildings of different height ranging from less than 5 m up to 100 m, were added to the basic land cover map. The heights were obtained by analyzing the LiDAR data provided by Swedish Land Survey (for details see Berghauser Pont et al., 2019). The data was rasterized and added on top of existing pixels representing buildings in the Swedish land cover map. The roads were separated into 101 new biotope classes with different expected number of vehicles per day. Instead of using statistics from the Swedish Transport Administration on observed number of vehicles per day relative traffic volumes were predicted based on angular betweenness centrality values calculated from the road network using PST (Place Syntax Tool, Stavroulaki et al. 2023). PST is an open-source plugin for QGIS (https://www.smog.chalmers.se/pst). Traffic volumes are expected to be correlated to the centrality values (Serra and Hillier, 2019). The vector layer with the centrality values was buffered by 15 m prior to rasterization. After that the new pixel values were added to the basic Land cover raster in sequence following the order of centrality values. Information on small streams with a maximum width of 6 m was added from a vector layer of Swedish streams (https://www.lantmateriet.se/en/geodata/geodata-products/product-list/topography-50-download-vector/). These lines where rasterized and added to the land cover raster by replacing the underlaying pixel values with new class specific pixel values. Small pondlike waterbodies was identified from the NMD data selecting contiguous fragments of the original NMD biotope class 61 with a smaller area than 1 hectare. Pixels representing the smaller water bodies was then changed to 201.

    References Berghauser Pont M, Stavroulaki G, Bobkova E, et al. (2019). The spatial distribution and frequency of street, plot and building types across five European cities. Environment and Planning B: Urban analytics and city science 46(7): 1226-1242. Serra M and Hillier B (2019) Angular and Metric Distance in Road Network Analysis: A nationwide correlation study. Computers, Environment and Urban Systems 74: 194-207. Stavroulaki I, Berghauser Pont M, Fitger M, et al. (2023) PST Documentation_v.3.2.5_20231128, DOI:10.13140/RG.2.2.32984.67845.

  9. a

    Urban Park Size (Southeast Blueprint Indicator)

    • secas-fws.hub.arcgis.com
    • hub.arcgis.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). Urban Park Size (Southeast Blueprint Indicator) [Dataset]. https://secas-fws.hub.arcgis.com/maps/d47cdf19c30b443096f5d94cf87b52d7
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly

  10. layers analysis

    • figshare.com
    zip
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Alharbi; Muhammad Almatar (2025). layers analysis [Dataset]. http://doi.org/10.6084/m9.figshare.28599647.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Abdullah Alharbi; Muhammad Almatar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Kuwait's arid desert landscape, geological formations, and extreme climate conditions make it a potential site for establishing a terrestrial Mars analog, as this research presents a new GIS-based methodology. The Analog Conjunctive Method (ACM) was specifically developed to identify a suitable location in Kuwait to hold a terrestrial Mars analog using a geographic information system (GIS) and remote sensing techniques. Analogs play a crucial role in simulating different Martian conditions, supporting astronaut training, testing various exploration technologies, and doing different types of scientific research on these environments. The ACM method integrates GIS and remote sensing techniques to evaluate the study area, resulting in potential sites for analog. The analysis employs two stages to finalize the best location. In stage one, the newly developed ACM is applied; it systematically eliminates unstable areas while allowing minimal flexibility for real-world environmental adjustment, particularly in regions with natural wind barriers. ACM is used to process the buffers created for the seven criteria (urban areas and farms, coastal areas, streets, airports, oil fields, natural reserves, and country borders) in QGIS to exclude unsuitable areas. Stage two screens the stage one map locations using different data (STRM, Copernicus sentinel-2, and field visits) to polish the selection based on other criteria (water bodies, dust rate, vegetation cover, and topography). The result shows nine locations in Jal Al-Zor as potential analog sites where a random location is selected for a 3D model creation to visualize the analog. Java Mission-planning and Analysis for Remote Sensing (JMARS) software was used to identify similarities between specific areas, such as the Jal Al-Zor escarpment and Huwaimllyah sand dunes in the Kuwait desert, and comparable terrains on Mars. The research concluded that Jal Al-Zor holds substantial potential as a terrestrial Mars analog site due to its geological and topographical similarities to Martian landscapes. This makes it an ideal location for crew training, Mars equipment testing, and further research in Mars analog studies, providing valuable insights for future planetary exploration.

  11. B

    Residential Schools Locations Dataset (Geodatabase)

    • borealisdata.ca
    • search.dataone.org
    Updated May 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 31, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  12. NZ Coastlines and Islands Polygons (Topo 1:50k)

    • data.linz.govt.nz
    • geodata.nz
    csv, dwg, geodatabase +6
    Updated Mar 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand (2020). NZ Coastlines and Islands Polygons (Topo 1:50k) [Dataset]. https://data.linz.govt.nz/layer/51153-nz-coastlines-and-islands-polygons-topo-150k/
    Explore at:
    mapinfo mif, mapinfo tab, kml, pdf, geodatabase, csv, dwg, geopackage / sqlite, shapefileAvailable download formats
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    License

    https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/

    Area covered
    New Zealand,
    Description

    This provides a polygon coastline and islands layer which is based on the Topo50 products. It is a combination of the following layers:

    This topographic coastline is the line forming the boundary between the land and sea, defined by mean high water.

    Islands from the NZ Island Polygons layer that lie within the NZ Coastline and Chatham Islands areas (i.e. islands in lakes, rivers and estuaries) have been removed.

    The GIS workflow to create the layer is:

    1. NZ Coastlines were converted from a polyline to a polygon using a polyline to polygon tool.
    2. The resulting coastal polygon was then used as an input into an erase tool and run against the NZ Island Polygon layer to remove all islands lying within the NZ Mainland and Stewart Island.
    3. This was then merged with the NZ Chatham Is island polygons (Topo, 1:50k) that have had the islands within the main island polygon removed, NZ Auckland Is Island Polygons (Topo, 1:50k), NZ Campbell Is / Motu Ihupuku Island, NZ Antipodes Is Island Polygons (Topo, 1:25k), NZ Kermadec Is Island Polygons (Topo, 1:25k), NZ Bounty Is Island Polygons (Topo, 1:25k) and NZ Snares Is / Tini Heke Island Polygons (Topo, 1:25k) layers using a merge tool.

    For more detailed description of each layer refer to the layer urls above.

    APIs and web services This dataset is available via ArcGIS Online and ArcGIS REST services, as well as our standard APIs. LDS APIs and OGC web services ArcGIS Online map services ArcGIS REST API

  13. Z

    3-D view of a slope affected by rockfall

    • data.niaid.nih.gov
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Notti, Davide; Guenzi, Diego (2022). 3-D view of a slope affected by rockfall [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6875770
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    CNR-IRPI
    Authors
    Notti, Davide; Guenzi, Diego
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the compressed folder, there is a 3-D view of the slope affected by rockfall and its defence nearby the town of Lauria (South Italy)

    To create a 3-D interactive view of the mitigation works (that can be used with any browser without installing GIS or other software), we used the Qgis2threejs plugin for QGIS. The LiDAR DTM was used as an elevation layer to create several high-resolution 3-D view models with different layers.

    Rockfall barriers

    Location of 2002 rockfall

    Area interested by 2017 wildfire

    building

    full Paper

    Merging Historical Archives with Remote Sensing Data: A Methodology to Improve Rockfall Mitigation Strategy for Small Communities

  14. a

    Caribbean Urban Park Size (Southeast Blueprint Indicator)

    • hub.arcgis.com
    • secas-fws.hub.arcgis.com
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2023). Caribbean Urban Park Size (Southeast Blueprint Indicator) [Dataset]. https://hub.arcgis.com/maps/ab02184458e045fc9142c84a2ac8e2c3
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for SelectionProtected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator.Input DataSoutheast Blueprint 2023 subregions: CaribbeanSoutheast Blueprint 2023 extentNational Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee EasementPuerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp) 2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 3-14-2023A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page. TNC Lands - Public Layer, accessed 3-8-2023U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)Mapping StepsMost mapping steps were completed using QGIS (v 3.22) Graphical Modeler.Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.Merge the terrestrial PR and VI PAD-US layers.Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.Fix geometry errors in the resulting merged layer using Fix Geometry.Intersect the resulting fixed file with the Caribbean Blueprint subregion.Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.Clip the Census urban area to the Caribbean Blueprint subregion.Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered. Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.Clip to the Caribbean Blueprint 2023 subregion.As a final step, clip to the spatial extent of Southeast Blueprint 2023. Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator valuesIndicator values are assigned as follows:6 = 75+ acre urban park5 = >50 to <75 acre urban park4 = 30 to <50 acre urban park3 = 10 to <30 acre urban park2 = 5 to <10 acre urban park1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources. This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.Other Things to Keep in MindThis indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous. The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast because the landcover data available in the Caribbean does not assess percent impervious in a comparable way.Disclaimer: Comparing with Older Indicator VersionsThere are numerous problems with using Southeast Blueprint

  15. a

    Medium resolution vector polygons of the Antarctic coastline

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Antarctic Survey (2022). Medium resolution vector polygons of the Antarctic coastline [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/BAS::medium-resolution-vector-polygons-of-the-antarctic-coastline-1
    Explore at:
    Dataset updated
    May 13, 2022
    Dataset authored and provided by
    British Antarctic Survey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Antarctica,
    Description

    Abstract Coastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with surface values for 'land', 'ice shelf', 'ice tongue', or 'rumple'. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. This dataset has been generalised from the high resolution vector polygons. Medium resolution versions of ADD data are suitable for scales smaller than 1:1,000,000, although certain regions will appear more detailed than others due to variable data availability and coastline characteristics.Changes in v7.11 include updates to the coastline of Adelaide Island and surrounding islands, the grounding line of Alexander Island and the surrounding region, and the ice shelf front of the Brunt Ice Shelf.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research. Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap. The currency of this dataset is November 2024 and will be reviewed every 6 months. This feature layer will always reflect the most recent version. For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue. A related high resolution dataset is also published via Living Atlas, as well medium and high resolution line datasets. For background information on the ADD project, please see the British Antarctic Survey ADD project page. LineageDataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry errors, but does not contain strict topology. Quality varies across the dataset, certain areas where high resolution source data were available are suitable for large scale maps, whereas other areas are only suitable for smaller scales. Each polygon contains a surface attribute with either 'land', 'ice shelf', 'ice tongue' or 'rumple'. Details of when and how each line was created can be found in the attributes of the high or medium resolution polyline coastline dataset. Data sources range in time from the 1990s to 2025. This medium resolution version has been generalised from the high resolution version. All polygons <0.1km² not intersecting anything else were deleted and the simplify tool was used in ArcGIS with the retain critical points algorithm and a smoothing tolerance of 50m. Citation Gerrish, L., Ireland, L., Fretwell, P., Cooper, P., & Skachkova, A. (2025). Medium resolution vector polygons of the Antarctic coastline (Version 7.11) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/981b1444-c57e-40f1-b6e9-884b44cad00eIf using for a graphic or if short on space, please cite as 'Data from the SCAR Antarctic Digital Database, 2025'.

  16. o

    Indicators of water quality in the Puruvesi Lake from 2008 to 2013 (OAL-FI)

    • data-catalogue.operandum-project.eu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Indicators of water quality in the Puruvesi Lake from 2008 to 2013 (OAL-FI) [Dataset]. https://data-catalogue.operandum-project.eu/dataset/indicators-of-water-quality-in-the-puruvesi-lake-from-2008-to-2013-oal-fi
    Explore at:
    Area covered
    Puruvesi
    Description

    This dataset contains monthly water quality indicators ( Chlorophyll-a, Particulate inorganic carbon (PIC) and Particulate organic carbon (P)C)) derived from Remote Sensing MODIS observations from 2008 to 2013. Chlorophyll-a Chlorophyll-a is a measure of the amount of algae growing in a waterbody. It can be used to classify the trophic condition of a waterbody. Although algae are a natural part of freshwater ecosystems, too much algae can cause aesthetic problems such as green scums and bad odors, and can result in decreased levels of dissolved oxygen. Some algae also produce toxins that can be of public health concern when they are found in high concentrations. Particulate inorganic carbon (PIC) Particulate inorganic carbon or calcium carbonate, is a major component of the global ocean carbon cycle. Through the process of calcification, marine organisms produce PIC shells and carbon dioxide from calcium ions and bicarbonate in seawater. These organisms, upon death, eventually sink to the ocean floor. During this process, the calcium carbonate shells may partially dissolve and what remains accounts for about 75% of carbon deposition on the seafloor (Groom & Holligan, 1987). Moreover, calcium carbonate production leads to an increase in partial pressure of dissolved carbon dioxide in the surface layer of the ocean, weakening the effectiveness of the carbon dioxide sink produced by photosynthesis (Shutler et al., 2013). Particulate onorganic carbon (POC) is one of the main pools of organic carbon found in the ocean. It is composed of living material (Phytoplankton, zooplanton, bacteria etc) and detritus. POC is important in terms of the global carbon cycle and it is the main pathway by which organic carbon formed via photosynthesis in the oceans surface layers is transferred to deeper ocean layers where it may be sequestered. In order to maintain the results in a easy to use platform, a GIS project is created using QGIS software (open source) to easily manage, edit, export and create layouts from the results. The layers are organized as follows: OPERANDUM_QGIS_prj.qgz: main QGIS project file that includes all layers PuruvesiLake (shapefile): Puruvesi lake exact boundary PuruvesiLake_with_buffer (shapefile): Puruvesi lake boundary with a buffer of 1 km to make sure that marginal pixels are within the boundary for the analysis PICMap_MODIS: 60 monthly layers of estimated Particulate inorganic carbon from January 2008 until January 2013 Chlorophyll-a: 60 monthly layers of estimated Chlorophyll-a content from January 2008 until January 2013 POCMap_MODIS: 60 monthly layers of estimated Particulate organic carbon from January 2008 until January 2013 You are not authorized to view this dataset. You may email the responsible party OPERANDUM to request access.

  17. g

    Ontario Land Cover Version 1.0

    • geohub.lio.gov.on.ca
    • data.urbandatacentre.ca
    • +3more
    Updated Aug 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information Ontario (2023). Ontario Land Cover Version 1.0 [Dataset]. https://geohub.lio.gov.on.ca/documents/667367a759214a089917adccdbae7cb2
    Explore at:
    Dataset updated
    Aug 31, 2023
    Dataset authored and provided by
    Land Information Ontario
    Area covered
    Description

    Ontario Land Cover (OLC) is a primary data layer. It provides a comprehensive, standardized, landscape level inventory of Ontario’s natural, rural and anthropogenic (human made) features.Product Packages:Esri-compatible PackageOpen source compatible PackageService:Now also available through a web service which circumvents the need to download data by exposing it for visualization over the internet. When using the ESRI Image Server URL in ESRI software full geoprocessing and analysis can also be done using just the service URL.Services can be accessed directly in ArcPro by using Add Data -> Add Data From Path and copying the desired service URL below into the text box. They can also be accessed by setting up an ArcGIS server connection in ESRI software using the ArcGIS Image Server REST endpoint URL.Services can also be accessed in open-source software. For example, in QGIS you can right click on the type of service you want to add in the browser pane (e.g., ArcGIS Rest Server, WCS, WMS/WMTS) and add the appropriate URL in the resultant popup window.. All services are in Web Mercator projection.For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email GeospatialOntario (GEO) at geospatial@ontario.ca.Service URL’sArcGIS Image Server Resthttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Thematic/Ontario_Land_Cover_Baseline_V1/ImageServerWeb Mapping Service (WMS)https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/Thematic/Ontario_Land_Cover_Baseline_V1/ImageServer/WMSServer/Web Coverage Service (WCS)https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/Thematic/Ontario_Land_Cover_Baseline_V1/ImageServer/WCSServer/Additional DocumentationBaseline Class Descriptions - Ontario Land Cover Version 1 (TEXT)Changes Descriptions - Ontario Land Cover Version 1 (TEXT)StatusCompleted: Production of the data has been completedMaintenance and Update FrequencyAs needed: Data is updated as deemed necessaryContactJoel Mostoway, Natural Resources and Forestry, Science and Research Branch, joel.mostoway@ontario.ca

  18. d

    Data from: Australian Coastline 50K 2024 (NESP MaC 3.17, AIMS)

    • data.gov.au
    • researchdata.edu.au
    html, png
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Ocean Data Network (2025). Australian Coastline 50K 2024 (NESP MaC 3.17, AIMS) [Dataset]. https://www.data.gov.au/data/dataset/australian-coastline-50k-2024-nesp-mac-3-17-aims
    Explore at:
    html, pngAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Australian Ocean Data Network
    Area covered
    Australia
    Description

    This dataset corresponds to land area polygons of Australian coastline and surrounding islands. It was generated from 10 m Sentinel 2 imagery from 2022 - 2024 using the Normalized Difference Water Index (NDWI) to distinguish land from water. It was estimated from composite imagery made up from images where the tide is above the mean sea level. The coastline approximately corresponds to the mean high water level. This dataset was created as part of the NESP MaC 3.17 northern Australian Reef mapping project. It was developed to allow the inshore edge of digitised fringing reef features to be neatly clipped to the land areas without requiring manual digitisation of the neighbouring coastline. This required a coastline polygon with an edge positional error of below 50 m so as to not distort the shape of small fringing reefs. We found that existing coastline datasets such as the Geodata Coast 100K 2004 and the Australian Hydrographic Office (AHO) Australian land and coastline dataset did not meet our needs. The scale of the Geodata Coast 100K 2004 was too coarse to represent small islands and the the positional error of the Australian Hydrographic Office (AHO) Australian land and coastline dataset was too high (typically 80 m) for our application as the errors would have introduced significant errors in the shape of small fringing reefs. The Digital Earth Australia Coastline (GA) dataset was sufficiently accurate and detailed however the format of the data was unsuitable for our application as the coast was expressed as disconnected line features between rivers, rather than a closed polygon of the land areas. We did however base our approach on the process developed for the DEA coastline described in Bishop-Taylor et al., 2021 (https://doi.org/10.1016/j.rse.2021.112734). Adapting it to our existing Sentinel 2 Google Earth processing pipeline. The difference between the approach used for the DEA coastline and this dataset was the DEA coastline performed the tidal calculations and filtering at the pixel level, where as in this dataset we only estimated a single tidal level for each whole Sentinel image scene. This was done for computational simplicity and to align with our existing Google Earth Engine image processing code. The images in the stack were sorted by this tidal estimate and those with a tidal high greater than the mean seal level were combined into the composite. The Sentinel 2 satellite follows a sun synchronous orbit and so does not observe the full range of tidal levels. This observed tidal range varies spatially due to the relative timing of peak tides with satellite image timing. We made no accommodation for variation in the tidal levels of the images used to calculate the coastline, other than selecting images that were above the mean tide level. This means tidal height that the dataset coastline corresponds to will vary spatially. While this approach is less precise than that used in the DEA Coastline the resulting errors were sufficiently low to meet the project goals.
    This simplified approach was chosen because it integrated well with our existing Sentinel 2 processing pipeline for generating composite imagery. To verify the accuracy of this dataset we manually checked the generated coastline with high resolution imagery (ArcGIS World Imagery). We found that 90% of the coastline polygons in this dataset have a horizontal position error of less than 20 m when compared to high-resolution imagery, except for isolated failure cases. During our manual checks we identified some areas where our algorithm can lead to falsely identifying land or not identifying land. We identified specific scenarios, or 'failure modes,' where our algorithm struggled to distinguish between land and water. These are shown in the image "Potential failure modes": a) The coastline is pushed out due to breaking waves (example: western coast, S2 tile ID 49KPG). b) False land polygons are created because of very turbid water due to suspended sediment. In clear water areas the near infrared channel is almost black, starkly different to the bright land areas. In very highly turbid waters the suspended sediment appears in the near infrared channel, raising its brightness to a level where it starts to overlap with the brightness of the dimmest land features. (example: Joseph Bonaparte Gulf, S2 tile ID 52LEJ). This results in turbid rivers not being correctly mapped. In version 1-1 of the dataset the rivers across northern Australia were manually corrected for these failures. c) Very shallow, gentle sloping areas are not recognised as water and the coastline is pushed out (example: Mornington Island, S2 tile ID 54KUG). Update: A second review of this area indicated that the mapped coastline is likely to be very close to the try coastline. d) The coastline is lower than the mean high water level (example: Great Keppel (Wop-pa) Island, S2 tile ID 55KHQ). Some of these potential failure modes could probably be addressed in the future by using a higher resolution tide calculation and using adjusted NDWI thresholds per region to accommodate for regional differences. Some of these failure modes are likely due to the near infrared channel (B8) being able to penetrate the water approximately 0.5 m leading to errors in very shallow areas. Some additional failures include: - Interpreting jetties as land - Interpreting oil rigs as land - Bridges being interpreted as land, cutting off rivers Methods: The coastline polygons were created in four separate steps: 1. Create above mean sea level (AMSL) composite images. 2. Calculate the Normalized Difference Water Index (NDWI) and visualise as a grey scale image. 3. Generate vector polygons from the grey scale image using a NDWI threshold. 4. Clean up and merge polygons. To create the AMSL composite images, multiple Sentinel 2 images were combined using the Google Earth Engine. The core algorithm was: 1. For each Sentinel 2 tile filter the "COPERNICUS/S2_HARMONIZED" image collection by - tile ID - maximum cloud cover 20% - date between '2022-01-01' and '2024-06-30' - asset_size > 100000000 (remove small fragments of tiles) 2. Remove high sun-glint images (see "High sun-glint image detection" for more information). 3. Split images by "SENSING_ORBIT_NUMBER" (see "Using SENSING_ORBIT_NUMBER for a more balanced composite" for more information). 4. Iterate over all images in the split collections to predict the tide elevation for each image from the image timestamp (see "Tide prediction" for more information). 5. Remove images where tide elevation is below mean sea level. 6. Select maximum of 200 images with AMSL tide elevation. 7. Combine SENSING_ORBIT_NUMBER collections into one image collection. 8. Remove sun-glint and apply atmospheric correction on each image (see "Sun-glint removal and atmospheric correction" for more information). 9. Duplicate image collection to first create a composite image without cloud masking and using the 15th percentile of the images in the collection (i.e. for each pixel the 15th percentile value of all images is used). 10. Apply cloud masking to all images in the original image collection (see "Cloud Masking" for more information) and create a composite by using the 15th percentile of the images in the collection (i.e. for each pixel the 15th percentile value of all images is used). 11. Combine the two composite images (no cloud mask composite and cloud mask composite). This solves the problem of some coral cays and islands being misinterpreted as clouds and therefore creating holes in the composite image. These holes are "plugged" with the underlying composite without cloud masking. (Lawrey et al. 2022) Next, for each image the NDWI was calculated: 1. Calculate the normalised difference using the B3 (green) and B8 (near infrared). 2. Shift the value range from between -1 and +1 to values between 1 and 255 (0 reserved as no-data value). 3. Export image as 8 bit unsigned Integer grey scale image. During the next step, we generated vector polygons from the grey scale image using a NDWI threshold: 1. Upscale image to 5 m resolution using bilinear interpolation. This was to help smooth the coastline and reduce the error introduced by the jagged pixel edges. 2. Apply a threshold to create a binary image (see "NDWI Threshold" for more information) with the value 1 for land and 2 for water (0: no data). 3. Create polygons for land values (1) in the binary image. 4. Export as shapefile. Finally, we created a single layer from the vectorised images: 1. Merge and dissolve all vector layers in QGIS. 2. Perform smoothing (QGIS toolbox, Iterations 1, Offset 0.25, Maximum node angle to smooth 180). 3. Perform simplification (QGIS toolbox, tolerance 0.00003). 4. Remove polygon vertices on the inner circle to fill out the continental Australia. 5. Perform manual QA/QC. In this step we removed false polygons created due to sun glint and breaking waves. We also removed very small features (1 – 1.5 pixel sized features, e.g. single mangrove trees) by calculating the area of each feature (in m2) and removing features smaller than 200 m2. 15th percentile composite: The composite image was created using the 15th percentile of the pixels values in the image stack. The 15th percentile was chosen, in preference to the median, to select darker pixels in the stack as these tend to correspond to images with clearer water conditions and higher tides. High sun-glint image detection: Images with high sun-glint can lead to lower quality composite images. To determine high sun-glint images, a land mask was first applied to the image to only retain water pixels. This land mask was estimated using NDWI. The proportion of the water pixels in the near-infrared and short-wave infrared bands above a sun-glint threshold was calculated. Images with a high proportion were then filtered out of the image collection.
    Sun-glint removal and atmospheric correction: The Top of Atmosphere L1

  19. a

    High resolution vector polylines of the Antarctic coastline

    • hub.arcgis.com
    Updated May 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Antarctic Survey (2022). High resolution vector polylines of the Antarctic coastline [Dataset]. https://hub.arcgis.com/maps/BAS::high-resolution-vector-polylines-of-the-antarctic-coastline-1
    Explore at:
    Dataset updated
    May 13, 2022
    Dataset authored and provided by
    British Antarctic Survey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    AbstractCoastline for Antarctica created from various mapping and remote sensing sources, consisting of the following coast types: 'ice coastline', 'rock coastline', 'grounding line', 'ice shelf and front', 'ice rumple', and 'rock against ice shelf', provided as a surface attribute. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. High resolution versions of ADD data are suitable for scales larger than 1:1,000,000. The largest suitable scale is changeable and dependent on the region.Changes in v7.11 include updates to the coastline of Adelaide Island and surrounding islands, the grounding line of Alexander Island and the surrounding region, and the ice shelf front of the Brunt Ice Shelf. In addition, sourcedate and revdate attributes were updated to a consistent YYYY-MM-DD format. To indicate limited date precision for earlier records, sourceprec and revprec attributes were introduced.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research. Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap. The currency of this dataset is November 2025 and will be reviewed every 6 months. This feature layer will always reflect the most recent version. For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue. A related medium resolution dataset is also published via Living Atlas, as well medium and high resolution polygon datasets. For background information on the ADD project, please see the British Antarctic Survey ADD project page. LineageDataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry errors, but does not contain strict topology. Quality varies across the dataset, certain areas where high-resolution source data were available are suitable for large-scale maps, whereas other areas are only suitable for smaller scales. Each line has attributes detailing the source, which can give the user further indications of its suitability for specific uses. Attributes also give information, including surface (e.g. grounding line, ice coastline, ice shelf front) and revision date (revdate), accompanied by revprec - date precision, either day, month, or year. Compiled from sources ranging in time from 1990s-2025 - individual lines contain exact source dates in sourcedate field with the corresponding sourceprec field. CitationGerrish, L., Ireland, L., Fretwell, P., Cooper, P., & Skachkova, A. (2025). High resolution vector polylines of the Antarctic coastline (Version 7.11) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/cc0b73c0-3b53-40fb-ae84-b5dce4ac163a If using for a graphic or if short on space, please cite as 'data from the SCAR Antarctic Digital Database, 2025'

  20. Key landscapes for the conservation of biodiversity in Sub-Saharan Africa....

    • data.niaid.nih.gov
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Weynants, Mélanie; Aveling, Conrad; Olivier, Rob; Murray, Martyn (2024). Key landscapes for the conservation of biodiversity in Sub-Saharan Africa. Proposal for modification of polygons. BIOPAMA. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8207554
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    European Commissionhttp://ec.europa.eu/
    Joint Research Centrehttps://joint-research-centre.ec.europa.eu/index_en
    Authors
    Weynants, Mélanie; Aveling, Conrad; Olivier, Rob; Murray, Martyn
    License

    https://joinup.ec.europa.eu/page/eupl-text-11-12https://joinup.ec.europa.eu/page/eupl-text-11-12

    Area covered
    Sub-Saharan Africa
    Description

    Key Landscapes for Conservation (KLC) are areas recognised to be of global wildlife importance with intact ecosystems that are capable of sustaining wildlife populations in the face of increasing isolation from other similar areas (Larger Than Elephants - Inputs for EU strategic approach to wildlife conservation in Africa - Regional Analysis, European Commission, 2016).

    In 2019 and 2020, following discussions with experts, the JRC proposed an update of the layer published in 2016. The 2020 layer was created in QGIS with python (10.5281/zenodo.8207793).

    The layer is available in three different data formats: ESRI shapefile, geojson and kml.

    The document KLC_modifications_20200922.pdf illustrates the proposed changes relative to the 2016 version of the polygons.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
WOOSUNG YOON (2025). 2_1_plan_research_area [Dataset]. https://www.kaggle.com/datasets/woosungyoon/2-1-plan-research-area
Organization logo

2_1_plan_research_area

Grid Selection Using GloRiC Data

Explore at:
zip(73671128 bytes)Available download formats
Dataset updated
Jun 28, 2025
Authors
WOOSUNG YOON
Description

Amazon Geoglyphs Spatial Analysis Dataset

DATA & Tools

Data Overview and Sources

This dataset was constructed for the Phase 2 research described in the write-up document, analyzing the spatial relationships between geoglyphs (ancient earthwork structures) in the Amazon basin and hydrological environments to identify potential geoglyph locations.

Data sources

  • HydroBASINS: www.hydrosheds.org - Global watershed boundaries
  • GloRiC: www.hydrosheds.org - Global River Classification
  • jqjacobs.net: Archaeogeodesy Placemarks (Amazon geoglyph category extracted from Google Earth KML)

File Structure

2_1_plan_research_area/
├── scripts/
│  └── kmz_point_extractor.py   # Data extraction script (Archaeogeodesy KMZ → geoglyph coordinates)
├── data/
│  ├── amazon_basin.gpkg     # Watershed boundaries (HydroBASINS Level 3 Amazon basin)
│  ├── amazon_gloric.gpkg     # River data (GloRiC clipped to basin extent)
│  ├── amazon_grid_gloric.gpkg  # Grid statistics (0.5° grid-based river environment statistics)
│  ├── sites_geoglyphs.gpkg    # Site locations (extracted geoglyph points)
│  ├── survey_area.gpkg      # Administrative areas (Brazil/Peru/Bolivia states of interest)
│  └── focus_area.gpkg      # Analysis area (potential geoglyph survey target region)
└── plan_research_area.qgz     # QGIS project (integrated layer management)

QGIS Processing Workflow

1. Watershed Boundary Extraction (amazon_basin.gpkg)

  • (1) Vector → Research Tools → Select by Attribute: Select Amazon basin by attributes
  • (2) Export → Save Selected Features As: Save selected features as new layer

2. River Data Clipping (amazon_gloric.gpkg)

  • (1) Vector → Research Tools → Select by Location: Select GloRiC features intersecting with amazon_basin
  • (2) Export → Save Selected Features As: Save selected river data
  • (3) Vector → Data Management Tools → Add Geometry Attributes: Calculate river length

3. Grid-based Statistics Generation (amazon_grid_gloric.gpkg)

  • (1) Vector → Research Tools → Create Grid: Create 0.5° interval grid
  • (2) Vector → Research Tools → Select by Location: Select grids contained within amazon_basin
  • (3) Vector → Analysis Tools → Join Attributes by Location (Summary): Calculate river characteristics statistics by grid
    • Aggregation functions: Mean, Standard Deviation
    • Target variables: Temp_min (minimum temperature), CMI_indx (climate moisture index), Log_elev (elevation)

4. Research Area Definition (survey_area.gpkg)

  • (1) Vector → Research Tools → Select by Attribute: Select Amazon areas of interest from country-level state shapefiles
  • (2) Export → Save Selected Features As: Save selected states as GPKG

5. Focus Research Area (focus_area.gpkg)

  • (1) Layer → Create Layer → New Shapefile Layer: Create new polygon layer
  • (2) Toggle Editing: Manually create rectangular polygon for potential geoglyph survey

This dataset serves as the foundation for Phase 2 research utilizing environmental filtering and Sentinel-2 multispectral analysis to identify potential geoglyph locations.

Search
Clear search
Close search
Google apps
Main menu