2 datasets found
  1. Z

    SAPFLUXNET: A global database of sap flow measurements

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Víctor Flo (2020). SAPFLUXNET: A global database of sap flow measurements [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2530797
    Explore at:
    Dataset updated
    Sep 26, 2020
    Dataset provided by
    Roberto Molowny-Horas
    Rafael Poyatos
    Víctor Flo
    Maurizio Mencuccini
    Víctor Granda
    Jordi Martínez-Vilalta
    Kathy Steppe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General description

    SAPFLUXNET contains a global database of sap flow and environmental data, together with metadata at different levels. SAPFLUXNET is a harmonised database, compiled from contributions from researchers worldwide.

    The SAPFLUXNET version 0.1.5 database harbours 202 globally distributed datasets, from 121 geographical locations. SAPFLUXNET contains sap flow data for 2714 individual plants (1584 angiosperms and 1130 gymnosperms), belonging to 174 species (141 angiosperms and 33 gymnosperms), 95 different genera and 45 different families. More information on the database coverage can be found here: http://sapfluxnet.creaf.cat/shiny/sfn_progress_dashboard/.

    The SAPFLUXNET project has been developed by researchers at CREAF and other institutions (http://sapfluxnet.creaf.cat/#team), coordinated by Rafael Poyatos (CREAF, http://www.creaf.cat/staff/rafael-poyatos-lopez), and funded by two Spanish Young Researcher's Grants (SAPFLUXNET, CGL2014-55883-JIN; DATAFORUSE, RTI2018-095297-J-I00 ) and an Alexander von Humboldt Research Fellowship for Experienced Researchers).

    Changelog

    Compared to version 0.1.4, this version includes some changes in the metadata, but all time series data (sap flow, environmental) remain the same.

    For all datasets, climate metadata (temperature and precipitation, ‘si_mat’ and ‘si_map’) have been extracted from CHELSA (https://chelsa-climate.org/), replacing the previous climate data obtained with Wordclim. This change has modified the biome classification of the datasets in ‘si_biome’.

    In ‘species’ metadata, the percentage of basal area with sap flow measurements for each species (‘sp_basal_area_perc’) is now assigned a value of 0 if species are in the understorey. This affects two datasets: AUS_MAR_UBD and AUS_MAR_UBW, where, previously, the sum of species basal area percentages could add up to more than 100%.

    In ‘species’ metadata, the percentage of basal area with sap flow measurements for each species (‘sp_basal_area_perc’) has been corrected for datasets USA_SIL_OAK_POS, USA_SIL_OAK_1PR, USA_SIL_OAK_2PR.

    In ‘site’ metadata, the vegetation type (‘si_igbp’) has been changed to SAV for datasets CHN_ARG_GWD and CHN_ARG_GWS.

    Variables and units

    SAPFLUXNET contains whole-plant sap flow and environmental variables at sub-daily temporal resolution. Both sap flow and environmental time series have accompanying flags in a data frame, one for sap flow and another for environmental variables. These flags store quality issues detected during the quality control process and can be used to add further quality flags.

    Metadata contain relevant variables informing about site conditions, stand characteristics, tree and species attributes, sap flow methodology and details on environmental measurements. The description and units of all data and metadata variables can be found here: Metadata and data units.

    To learn more about variables, units and data flags please use the functionalities implemented in the sapfluxnetr package (https://github.com/sapfluxnet/sapfluxnetr). In particular, have a look at the package vignettes using R:

    remotes::install_github(

    'sapfluxnet/sapfluxnetr',

    build_opts = c("--no-resave-data", "--no-manual", "--build-vignettes")

    )

    library(sapfluxnetr)

    to list all vignettes

    vignette(package='sapfluxnetr')

    variables and units

    vignette('metadata-and-data-units', package='sapfluxnetr')

    data flags

    vignette('data-flags', package='sapfluxnetr')

    Data formats

    SAPFLUXNET data can be found in two formats: 1) RData files belonging to the custom-built 'sfn_data' class and 2) Text files in .csv format. We recommend using the sfn_data objects together with the sapfluxnetr package, although we also provide the text files for convenience. For each dataset, text files are structured in the same way as the slots of sfn_data objects; if working with text files, we recommend that you check the data structure of 'sfn_data' objects in the corresponding vignette.

    Working with sfn_data files

    To work with SAPFLUXNET data, first they have to be downloaded from Zenodo, maintaining the folder structure. A first level in the folder hierarchy corresponds to file format, either RData files or csv's. A second level corresponds to how sap flow is expressed: per plant, per sapwood area or per leaf area. Please note that interconversions among the magnitudes have been performed whenever possible. Below this level, data have been organised per dataset. In the case of RData files, each dataset is contained in a sfn_data object, which stores all data and metadata in different slots (see the vignette 'sfn-data-classes'). In the case of csv files, each dataset has 9 individual files, corresponding to metadata (5), sap flow and environmental data (2) and their corresponding data flags (2).

    After downloading the entire database, the sapfluxnetr package can be used to: - Work with data from a single site: data access, plotting and time aggregation. - Select the subset datasets to work with. - Work with data from multiple sites: data access, plotting and time aggregation.

    Please check the following package vignettes to learn more about how to work with sfn_data files:

    Quick guide

    Metadata and data units

    sfn_data classes

    Custom aggregation

    Memory and parallelization

    Working with text files

    We recommend to work with sfn_data objects using R and the sapfluxnetr package and we do not currently provide code to work with text files.

    Data issues and reporting

    Please report any issue you may find in the database by sending us an email: sapfluxnet@creaf.uab.cat.

    Temporary data fixes, detected but not yet included in released versions will be published in SAPFLUXNET main web page ('Known data errors').

    Data access, use and citation

    This version of the SAPFLUXNET database is open access and corresponds to the data paper submitted to Earth System Science Data in August 2020.

    When using SAPFLUXNET data in an academic work, please cite the data paper, when available, or alternatively, the Zenodo dataset (see the ‘Cite as’ section on the right panels of this web page).

  2. e

    A global database of long-term changes in insect assemblages

    • knb.ecoinformatics.org
    • search-dev.test.dataone.org
    • +4more
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roel van Klink; Diana E. Bowler; Jonathan M. Chase; Orr Comay; Michael M. Driessen; S.K. Morgan Ernest; Alessandro Gentile; Francis Gilbert; Konstantin Gongalsky; Jennifer Owen; Guy Pe'er; Israel Pe'er; Vincent H. Resh; Ilia Rochlin; Sebastian Schuch; Ann E. Swengel; Scott R. Swengel; Thomas L. Valone; Rikjan Vermeulen; Tyson Wepprich; Jerome Wiedmann (2022). A global database of long-term changes in insect assemblages [Dataset]. http://doi.org/10.5063/F1ZC817H
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Roel van Klink; Diana E. Bowler; Jonathan M. Chase; Orr Comay; Michael M. Driessen; S.K. Morgan Ernest; Alessandro Gentile; Francis Gilbert; Konstantin Gongalsky; Jennifer Owen; Guy Pe'er; Israel Pe'er; Vincent H. Resh; Ilia Rochlin; Sebastian Schuch; Ann E. Swengel; Scott R. Swengel; Thomas L. Valone; Rikjan Vermeulen; Tyson Wepprich; Jerome Wiedmann
    Time period covered
    Jan 1, 1925 - Jan 1, 2018
    Area covered
    Variables measured
    End, Link, Year, Realm, Start, CRUmnC, CRUmnK, Metric, Number, Period, and 63 more
    Description

    UPDATED on October 15 2020 After some mistakes in some of the data were found, we updated this data set. The changes to the data are detailed on Zenodo (http://doi.org/10.5281/zenodo.4061807), and an Erratum has been submitted. This data set under CC-BY license contains time series of total abundance and/or biomass of assemblages of insect, arachnid and Entognatha assemblages (grouped at the family level or higher taxonomic resolution), monitored by standardized means for ten or more years. The data were derived from 165 data sources, representing a total of 1668 sites from 41 countries. The time series for abundance and biomass represent the aggregated number of all individuals of all taxa monitored at each site. The data set consists of four linked tables, representing information on the study level, the plot level, about sampling, and the measured assemblage sizes. all references to the original data sources can be found in the pdf with references, and a Google Earth file (kml) file presents the locations (including metadata) of all datasets. When using (parts of) this data set, please respect the original open access licenses. This data set underlies all analyses performed in the paper 'Meta-analysis reveals declines in terrestrial, but increases in freshwater insect abundances', a meta-analysis of changes in insect assemblage sizes, and is accompanied by a data paper entitled 'InsectChange – a global database of temporal changes in insect and arachnid assemblages'. Consulting the data paper before use is recommended. Tables that can be used to calculate trends of specific taxa and for species richness will be added as they become available. The data set consists of four tables that are linked by the columns 'DataSource_ID'. and 'Plot_ID', and a table with references to original research. In the table 'DataSources', descriptive data is provided at the dataset level: Links are provided to online repositories where the original data can be found, it describes whether the dataset provides data on biomass, abundance or both, the invertebrate group under study, the realm, and describes the location of sampling at different geographic scales (continent to state). This table also contains a reference column. The full reference to the original data is found in the file 'References_to_original_data_sources.pdf'. In the table 'PlotData' more details on each site within each dataset are provided: there is data on the exact location of each plot, whether the plots were experimentally manipulated, and if there was any spatial grouping of sites (column 'Location'). Additionally, this table contains all explanatory variables used for analysis, e.g. climate change variables, land-use variables, protection status. The table 'SampleData' describes the exact source of the data (table X, figure X, etc), the extraction methods, as well as the sampling methods (derived from the original publications). This includes the sampling method, sampling area, sample size, and how the aggregation of samples was done, if reported. Also, any calculations we did on the original data (e.g. reverse log transformations) are detailed here, but more details are provided in the data paper. This table links to the table 'DataSources' by the column 'DataSource_ID'. Note that each datasource may contain multiple entries in the 'SampleData' table if the data were presented in different figures or tables, or if there was any other necessity to split information on sampling details. The table 'InsectAbundanceBiomassData' provides the insect abundance or biomass numbers as analysed in the paper. It contains columns matching to the tables 'DataSources' and 'PlotData', as well as year of sampling, a descriptor of the period within the year of sampling (this was used as a random effect), the unit in which the number is reported (abundance or biomass), and the estimated abundance or biomass. In the column for Number, missing data are included (NA). The years with missing data were added because this was essential for the analysis performed, and retained here because they are easier to remove than to add. Linking the table 'InsectAbundanceBiomassData.csv' with 'PlotData.csv' by column 'Plot_ID', and with 'DataSources.csv' by column 'DataSource_ID' will provide the full dataframe used for all analyses. Detailed explanations of all column headers and terms are available in the ReadMe file, and more details will be available in the forthcoming data paper. WARNING: Because of the disparate sampling methods and various spatial and temporal scales used to collect the original data, this dataset should never be used to test for differences in insect abundance/biomass among locations (i.e. differences in intercept). The data can only be used to study temporal trends, by testing for differences in slopes. The data are standardized within plots to allow the temporal comparison, but not necessarily among plots (even within one dataset).

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Víctor Flo (2020). SAPFLUXNET: A global database of sap flow measurements [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2530797

SAPFLUXNET: A global database of sap flow measurements

Explore at:
Dataset updated
Sep 26, 2020
Dataset provided by
Roberto Molowny-Horas
Rafael Poyatos
Víctor Flo
Maurizio Mencuccini
Víctor Granda
Jordi Martínez-Vilalta
Kathy Steppe
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

General description

SAPFLUXNET contains a global database of sap flow and environmental data, together with metadata at different levels. SAPFLUXNET is a harmonised database, compiled from contributions from researchers worldwide.

The SAPFLUXNET version 0.1.5 database harbours 202 globally distributed datasets, from 121 geographical locations. SAPFLUXNET contains sap flow data for 2714 individual plants (1584 angiosperms and 1130 gymnosperms), belonging to 174 species (141 angiosperms and 33 gymnosperms), 95 different genera and 45 different families. More information on the database coverage can be found here: http://sapfluxnet.creaf.cat/shiny/sfn_progress_dashboard/.

The SAPFLUXNET project has been developed by researchers at CREAF and other institutions (http://sapfluxnet.creaf.cat/#team), coordinated by Rafael Poyatos (CREAF, http://www.creaf.cat/staff/rafael-poyatos-lopez), and funded by two Spanish Young Researcher's Grants (SAPFLUXNET, CGL2014-55883-JIN; DATAFORUSE, RTI2018-095297-J-I00 ) and an Alexander von Humboldt Research Fellowship for Experienced Researchers).

Changelog

Compared to version 0.1.4, this version includes some changes in the metadata, but all time series data (sap flow, environmental) remain the same.

For all datasets, climate metadata (temperature and precipitation, ‘si_mat’ and ‘si_map’) have been extracted from CHELSA (https://chelsa-climate.org/), replacing the previous climate data obtained with Wordclim. This change has modified the biome classification of the datasets in ‘si_biome’.

In ‘species’ metadata, the percentage of basal area with sap flow measurements for each species (‘sp_basal_area_perc’) is now assigned a value of 0 if species are in the understorey. This affects two datasets: AUS_MAR_UBD and AUS_MAR_UBW, where, previously, the sum of species basal area percentages could add up to more than 100%.

In ‘species’ metadata, the percentage of basal area with sap flow measurements for each species (‘sp_basal_area_perc’) has been corrected for datasets USA_SIL_OAK_POS, USA_SIL_OAK_1PR, USA_SIL_OAK_2PR.

In ‘site’ metadata, the vegetation type (‘si_igbp’) has been changed to SAV for datasets CHN_ARG_GWD and CHN_ARG_GWS.

Variables and units

SAPFLUXNET contains whole-plant sap flow and environmental variables at sub-daily temporal resolution. Both sap flow and environmental time series have accompanying flags in a data frame, one for sap flow and another for environmental variables. These flags store quality issues detected during the quality control process and can be used to add further quality flags.

Metadata contain relevant variables informing about site conditions, stand characteristics, tree and species attributes, sap flow methodology and details on environmental measurements. The description and units of all data and metadata variables can be found here: Metadata and data units.

To learn more about variables, units and data flags please use the functionalities implemented in the sapfluxnetr package (https://github.com/sapfluxnet/sapfluxnetr). In particular, have a look at the package vignettes using R:

remotes::install_github(

'sapfluxnet/sapfluxnetr',

build_opts = c("--no-resave-data", "--no-manual", "--build-vignettes")

)

library(sapfluxnetr)

to list all vignettes

vignette(package='sapfluxnetr')

variables and units

vignette('metadata-and-data-units', package='sapfluxnetr')

data flags

vignette('data-flags', package='sapfluxnetr')

Data formats

SAPFLUXNET data can be found in two formats: 1) RData files belonging to the custom-built 'sfn_data' class and 2) Text files in .csv format. We recommend using the sfn_data objects together with the sapfluxnetr package, although we also provide the text files for convenience. For each dataset, text files are structured in the same way as the slots of sfn_data objects; if working with text files, we recommend that you check the data structure of 'sfn_data' objects in the corresponding vignette.

Working with sfn_data files

To work with SAPFLUXNET data, first they have to be downloaded from Zenodo, maintaining the folder structure. A first level in the folder hierarchy corresponds to file format, either RData files or csv's. A second level corresponds to how sap flow is expressed: per plant, per sapwood area or per leaf area. Please note that interconversions among the magnitudes have been performed whenever possible. Below this level, data have been organised per dataset. In the case of RData files, each dataset is contained in a sfn_data object, which stores all data and metadata in different slots (see the vignette 'sfn-data-classes'). In the case of csv files, each dataset has 9 individual files, corresponding to metadata (5), sap flow and environmental data (2) and their corresponding data flags (2).

After downloading the entire database, the sapfluxnetr package can be used to: - Work with data from a single site: data access, plotting and time aggregation. - Select the subset datasets to work with. - Work with data from multiple sites: data access, plotting and time aggregation.

Please check the following package vignettes to learn more about how to work with sfn_data files:

Quick guide

Metadata and data units

sfn_data classes

Custom aggregation

Memory and parallelization

Working with text files

We recommend to work with sfn_data objects using R and the sapfluxnetr package and we do not currently provide code to work with text files.

Data issues and reporting

Please report any issue you may find in the database by sending us an email: sapfluxnet@creaf.uab.cat.

Temporary data fixes, detected but not yet included in released versions will be published in SAPFLUXNET main web page ('Known data errors').

Data access, use and citation

This version of the SAPFLUXNET database is open access and corresponds to the data paper submitted to Earth System Science Data in August 2020.

When using SAPFLUXNET data in an academic work, please cite the data paper, when available, or alternatively, the Zenodo dataset (see the ‘Cite as’ section on the right panels of this web page).

Search
Clear search
Close search
Google apps
Main menu