67 datasets found
  1. ChemPedia as RDF

    • figshare.com
    txt
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Egon Willighagen (2023). ChemPedia as RDF [Dataset]. http://doi.org/10.6084/m9.figshare.681678.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Egon Willighagen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ChemPedia was a project by Rich Apodaca for crowd sourcing names of chemical compounds. Users were able to contribute names and up- or downvote names. When the service was discontinued, Rich released the data under the CCZero license.

  2. f

    In plane (2D) RDF LAMMPS Trajectory

    • figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amrita Goswami; Rohit Goswami (2023). In plane (2D) RDF LAMMPS Trajectory [Dataset]. http://doi.org/10.6084/m9.figshare.11448711.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Amrita Goswami; Rohit Goswami
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This is the trajectory file meant to work with the rdf2d-example example folder of d-SEAMS. Check Github to navigate the source code in the browser. The filename needs to be preserved to run without any changes.

  3. b

    NBDC Nikkaji RDF

    • dbarchive.biosciencedbc.jp
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Japan Science and Technology Agency (JST) (2025). NBDC Nikkaji RDF [Dataset]. http://doi.org/10.18908/lsdba.nbdc01530-02-000
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Japan Science and Technology Agency (JST)
    Description

    NBDC NikkajiRDF is RDF data of Japan Chemical Substance Dictionary (Nikkaji), which is one of the largest chemical substance databases in Japan.

  4. m

    MNXref namespace

    • metanetx.org
    • rdf.metanetx.org
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The MetaNetX/MNXref team (2025). MNXref namespace [Dataset]. http://identifiers.org/CHEBI:27732
    Explore at:
    Dataset updated
    Jan 31, 2025
    Authors
    The MetaNetX/MNXref team
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MNXref reconciliation of metabolites and biochemical reactions namespace

  5. f

    Data from: Bringing Chemical Data onto the Semantic Web

    • acs.figshare.com
    xml
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K. R. Taylor; R. J. Gledhill; J. W. Essex; J. G. Frey; S. W. Harris; D. C. De Roure (2023). Bringing Chemical Data onto the Semantic Web [Dataset]. http://doi.org/10.1021/ci050378m.s001
    Explore at:
    xmlAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    K. R. Taylor; R. J. Gledhill; J. W. Essex; J. G. Frey; S. W. Harris; D. C. De Roure
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Present chemical data storage methodologies place many restrictions on the use of the stored data. The absence of sufficient high-quality metadata prevents intelligent computer access to the data without human intervention. This creates barriers to the automation of data mining in activities such as quantitative structure−activity relationship modelling. The application of Semantic Web technologies to chemical data is shown to reduce these limitations. The use of unique identifiers and relationships (represented as uniform resource identifiers, URIs, and resource description framework, RDF) held in a triplestore provides for greater detail and flexibility in the sharing and storage of molecular structures and properties.

  6. D

    ChEMBL-RDF v13.5

    • dataverse.nl
    application/x-gzip
    Updated Nov 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Egon Willighagen; Egon Willighagen (2021). ChEMBL-RDF v13.5 [Dataset]. http://doi.org/10.34894/IJWU5L
    Explore at:
    application/x-gzip(765062132)Available download formats
    Dataset updated
    Nov 22, 2021
    Dataset provided by
    DataverseNL
    Authors
    Egon Willighagen; Egon Willighagen
    License

    https://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/IJWU5Lhttps://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/IJWU5L

    Area covered
    Netherlands
    Description

    ChEMBL is medicinal chemistry database by the team of dr. J. Overington at the EBI: http://www.ebi.ac.uk/chembl/ It is detailed in this paper (doi:10.1093/nar/gkr777): http://nar.oxfordjournals.org/content/early/2011/09/22/nar.gkr777.short This project develops, releases, and hosts a RDF version of ChEMBL, independent from the ChEMBL team who make their own RDF version. The main SPARQL end point is available from Uppsala University at: http://rdf.farmbio.uu.se/chembl/sparql

  7. Resource Description Framework (RDF) Modeling of Named Entity Co-occurrences...

    • zenodo.org
    application/gzip
    Updated Nov 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qingliang Li; Qingliang Li; Sunghwan Kim; Sunghwan Kim; Leonid Zaslavsky; Leonid Zaslavsky; Tiejun Cheng; Tiejun Cheng; Bo Yu; Bo Yu; Evan Bolton; Evan Bolton (2023). Resource Description Framework (RDF) Modeling of Named Entity Co-occurrences in Biomedical Literature and Its Integration with PubChemRDF [Dataset]. http://doi.org/10.5281/zenodo.10126726
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Qingliang Li; Qingliang Li; Sunghwan Kim; Sunghwan Kim; Leonid Zaslavsky; Leonid Zaslavsky; Tiejun Cheng; Tiejun Cheng; Bo Yu; Bo Yu; Evan Bolton; Evan Bolton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used in the publication of "Resource Description Framework (RDF) Modeling of Named Entity Co-occurrences in Biomedical Literature and Its Integration with PubChemRDF"

  8. b

    Core

    • dbarchive.biosciencedbc.jp
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Core [Dataset]. http://doi.org/10.18908/lsdba.nbdc01530-02-008.V011
    Explore at:
    Dataset updated
    Apr 21, 2025
    Description

    This RDF data contains the core information of chemical substances such as NIkkaji Number, English/Japanese label, Type, Chemical structure diagram, and same object which were extracted extracted from the Basic Information RDF. We recommend using this RDF together with the 'InChI and InChIKey' 'Canonical SMILES' or 'MOL/SDF' RDF.

  9. IL_EPA_WQX-RDF-1

    • geoconnex.us
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    illinois epa, IL_EPA_WQX-RDF-1 [Dataset]. https://geoconnex.us/iow/wqp/IL_EPA_WQX-RDF-1?f=html
    Explore at:
    text/comma-separated-valuesAvailable download formats
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Illinois Environmental Protection Agency
    Time period covered
    Jan 1, 2006 - Dec 31, 2011
    Area covered
    Illinois
    Variables measured
    .alpha.-Hexachlorocyclohexane
    Description

    .alpha.-Hexachlorocyclohexane at IL_EPA_WQX-RDF-1

  10. o

    Datasets for Linked Open Data Instance Level Analysis for Cultural Heritage

    • explore.openaire.eu
    • data.niaid.nih.gov
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sugimoto Go (2021). Datasets for Linked Open Data Instance Level Analysis for Cultural Heritage [Dataset]. http://doi.org/10.5281/zenodo.4455462
    Explore at:
    Dataset updated
    Jan 21, 2021
    Authors
    Sugimoto Go
    Description

    This is the datasets used for Linked Open Data instant level quality analysis for cultural heritage (2020). 7Z and ZIP versions are available for both Excel 2006 and R 4.0.3. The compressed files include, Excel spreadsheets (.xlsx, .csv), VBA scripts (.bas), and R scripts (.r). Please read the full documentation in Linked_Open_Data_Instance_Level_Analysis_Procedure.pdf.

  11. i

    Simulation results for paper: Statistical Variability Study of RDF and LER...

    • ieee-dataport.org
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Ding (2024). Simulation results for paper: Statistical Variability Study of RDF and LER on Nanosheet FETs at Sub 3nm Node [Dataset]. https://ieee-dataport.org/documents/simulation-results-paper-statistical-variability-study-rdf-and-ler-nanosheet-fets-sub-3nm
    Explore at:
    Dataset updated
    Feb 29, 2024
    Authors
    Jie Ding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Nano-electronic Simulation Software (NESS)

  12. c

    Data for "Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a...

    • repository.cam.ac.uk
    zip
    Updated Aug 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mocanu, FC; Konstantinou, Konstantinos (2018). Data for "Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential" [Dataset]. http://doi.org/10.17863/CAM.26412
    Explore at:
    zip(219571833 bytes), zip(697861775 bytes), zip(398394 bytes), zip(71027332 bytes)Available download formats
    Dataset updated
    Aug 30, 2018
    Dataset provided by
    University of Cambridge
    Apollo
    Authors
    Mocanu, FC; Konstantinou, Konstantinos
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This data set contains:

    1. Trajectories of glass and liquid Ge2Sb2Te5 models generated with the GAP. There are 5 models labeled 001-005 of 315 atoms and one large model of 7,200 atoms labeled 7K.

    2. Structural analysis data including: radial distribution functions, rings, voids, tetrahedral angular order parameters.

    3. The inter-atomic potential used to carry out the simulations.

    4. The crystallization trajectory of one of the GAP models is provided separately due to the size.

  13. q

    Fatty acid profile of sebum by advancing LC-MS/MS

    • researchdatafinder.qut.edu.au
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Professor Stephen Blanksby (2025). Fatty acid profile of sebum by advancing LC-MS/MS [Dataset]. https://researchdatafinder.qut.edu.au/individual/n126535
    Explore at:
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Queensland University of Technology (QUT)
    Authors
    Professor Stephen Blanksby
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data archive accompanies the master thesis Advancing Technologies for Unravelling Skin Lipidomes by Qiyu Liu.

    This dataset primarily focuses on the fatty acid (FA) profiles of sebum, a key lipid mixture involved in skin barrier function. Using advanced LC-MS techniques, including derivatization with 4-I-AMPP+ and analysis by LC-UVPD-MS/OzID-MS, we comprehensively characterized 692 FAs (C8–C40) with varying unsaturation levels. The dataset highlights novel structural features, including branched-chain and very-long-chain FAs, providing new insights into sebum composition and its potential links to skin and neurological disorders. This resource supports further research into lipid metabolism and biomarker discovery.

  14. DBGI tropical pilot ENPKG files

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pierre-Marie Allard; Pierre-Marie Allard (2023). DBGI tropical pilot ENPKG files [Dataset]. http://doi.org/10.5281/zenodo.7871493
    Explore at:
    binAvailable download formats
    Dataset updated
    May 10, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Pierre-Marie Allard; Pierre-Marie Allard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DBGI tropical pilot mass spectrometry dataset

    ttl files generated through the ENPK workflow

  15. q

    Vernix OzID data

    • researchdatafinder.qut.edu.au
    • researchdata.edu.au
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Berwyck Poad (2019). Vernix OzID data [Dataset]. https://researchdatafinder.qut.edu.au/individual/n12772
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Queensland University of Technology (QUT)
    Authors
    Dr Berwyck Poad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This data set accompanies the manuscript Combining Charge-Switch Derivatisation with Ozone-Induced Dissociation for Facile Fatty Acid Analysis by Berwyck L.J. Poad, David L. Marshall,Eva Harazim, Rajesh Gupta,Venkateswarra R. Narreddula, Reuben S. E. Young, Todd W. Mitchell, Eva Duchoslav, J. Larry Campbell, James A. Broadbent, Josef Cvačka and Stephen J. Blanksby (In Press).

    Abstract: The specific positions of carbon-carbon double bond(s) within an unsaturated fatty acid exert a significant effect on the physical and chemical properties of the lipid that ultimately inform its biological function(s). Contemporary liquid-chromatography mass spectrometry (MS) strategies based on electrospray ionisation coupled to tandem MS can easily detect fatty acyl lipids but generally cannot reveal those specific site(s) of unsaturation. Herein, we describe a novel and versatile workflow whereby fatty acids are first converted to fixed charge N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives and subsequently subjected to ozone-induced dissociation (OzID) on a modified triple quadrupole mass spectrometer. The AMPP modification enhances the detection of fatty acids introduced by direct infusion. Fragmentation of the derivatised fatty acids also provides diagnostic fragment ions upon collision-induced dissociation that can be targeted in precursor ion scans to subsequently trigger OzID analyses in an automated data-dependent workflow. It is these OzID analyses that provide unambiguous assignment of carbon-carbon double bond locations in the AMPP-derivatized fatty acids. The performance of this analysis pipeline is assessed in profiling the patterns of unsaturation in fatty acids within the complex biological secretion vernix caseosa. This analysis uncovers significant isomeric diversity within the fatty acid pool of this sample, including a number of hitherto unreported double bond-positional isomers that hint at the activity of potentially new metabolic pathways.

    Data file types consist of SCIEX Analyst (.wiff) files, and Python (.py) files.

  16. ChEBI datasets

    • figshare.com
    application/x-zstd
    Updated Apr 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dominik Tomaszuk (2022). ChEBI datasets [Dataset]. http://doi.org/10.6084/m9.figshare.19665315.v1
    Explore at:
    application/x-zstdAvailable download formats
    Dataset updated
    Apr 27, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dominik Tomaszuk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ChEBI dataset in Turtle, N-Triples, JSON-LD, and RDF/XML. https://www.ebi.ac.uk/chebi/

  17. IL_EPA_WQX-RDF-3

    • geoconnex.us
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    illinois epa, IL_EPA_WQX-RDF-3 [Dataset]. https://geoconnex.us/iow/wqp/IL_EPA_WQX-RDF-3?f=html
    Explore at:
    text/comma-separated-valuesAvailable download formats
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Illinois Environmental Protection Agency
    Time period covered
    Jan 1, 2006 - Dec 31, 2022
    Area covered
    Illinois
    Variables measured
    Ammonia-nitrogen
    Description

    Ammonia-nitrogen at IL_EPA_WQX-RDF-3

  18. Z

    RDF version of the data from Choi, JS. et al. Towards a generalized toxicity...

    • data.niaid.nih.gov
    • nanocommons.github.io
    • +1more
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ammar Ammar (2024). RDF version of the data from Choi, JS. et al. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources (2018) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5084825
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset authored and provided by
    Ammar Ammar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is an RDFied version of the dataset published in Choi, JS., Ha, M.K., Trinh, T.X. et al. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources. Sci Rep 8, 6110 (2018)

    The original dataset publication DOI: https://doi.org/10.1038/s41598-018-24483-z

    The Original publication authors: Jang-Sik Choi, My Kieu Ha, Tung Xuan Trinh, Tae Hyun Yoon & Hyung-Gi Byun

  19. b

    Canonical SMILES

    • dbarchive.biosciencedbc.jp
    Updated Oct 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Canonical SMILES [Dataset]. http://doi.org/10.18908/lsdba.nbdc01530-02-003.V011
    Explore at:
    Dataset updated
    Oct 28, 2015
    Description

    This RDF data contains canonical SMILES of chemical substances registered in Nikkaji by using CHEMINF, SIO and other ontologies. We recommend using this RDF together with the Core RDF.

  20. IL_EPA-RDF-1

    • sta.geoconnex.dev
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Illinois EPA, IL_EPA-RDF-1 [Dataset]. https://sta.geoconnex.dev/collections/WQP/Things/items/'IL_EPA-RDF-1'
    Explore at:
    text/comma-separated-valuesAvailable download formats
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Illinois Environmental Protection Agency
    Time period covered
    Jan 1, 2003 - Dec 31, 2003
    Area covered
    Illinois
    Variables measured
    Pendimethalin
    Description

    Pendimethalin at IL_EPA-RDF-1

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Egon Willighagen (2023). ChemPedia as RDF [Dataset]. http://doi.org/10.6084/m9.figshare.681678.v1
Organization logo

ChemPedia as RDF

Explore at:
txtAvailable download formats
Dataset updated
Jun 4, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Egon Willighagen
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

ChemPedia was a project by Rich Apodaca for crowd sourcing names of chemical compounds. Users were able to contribute names and up- or downvote names. When the service was discontinued, Rich released the data under the CCZero license.

Search
Clear search
Close search
Google apps
Main menu