Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
TwitterIn the U.S., the share of the population living in poverty fluctuated significantly throughout the six decades between 1987 and 2023. In 2023, the poverty level across all races and ethnicities was 11.1 percent. Black Americans have been the ethnic group with the highest share of their population living in poverty almost every year since 1974. In 1979 alone, Black poverty was well over double the national average, and over four times the poverty rate in white communities; in 1982, almost 48 percent of the Black population lived in poverty. Although poverty rates have been trending downward across all ethnic groups, 17.8 percent of Black Americans and 18.9 percent of American Indian and Alaskan Natives still lived below the poverty line in 2022.
Facebook
TwitterTo assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent. Data Source: Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17.Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 2017 - 2021 ACSDate Updated: 10/2023
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poverty Status by Town reports the number and percentage of people and children living in poverty, by race/ethnicity and age range.
Facebook
TwitterIn 2024, just over 45 percent of American households had an annual income that was less than 75,000 U.S. dollars. On the other hand, some 16 percent had an annual income of 200,000 U.S. dollars or more. The median household income in the country reached almost 84,000 U.S. dollars in 2024. Income and wealth in the United States After the economic recession in 2009, income inequality in the U.S. is more prominent across many metropolitan areas. The Northeast region is regarded as one of the wealthiest in the country. Massachusetts, New Hampshire, and Maryland were among the states with the highest median household income in 2024. In terms of income by race and ethnicity, the average income of Asian households was highest, at over 120,000 U.S. dollars, while the median income among Black households was around half of that figure. What is the U.S. poverty threshold? The U.S. Census Bureau annually updates the poverty threshold based on the income of various household types. As of 2023, the threshold for a single-person household was 15,480 U.S. dollars. For a family of four, the poverty line increased to 31,200 U.S. dollars. There were an estimated 38.9 million people living in poverty across the United States in 2024, which reflects a poverty rate of 10.6 percent.
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2013 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP13: 2013 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2013) CT10FIP13: 2010 census tract with 2013 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP13_AGE_0_4: 2013 population 0 to 4 years oldPOP13_AGE_5_9: 2013 population 5 to 9 years old POP13_AGE_10_14: 2013 population 10 to 14 years old POP13_AGE_15_17: 2013 population 15 to 17 years old POP13_AGE_18_19: 2013 population 18 to 19 years old POP13_AGE_20_44: 2013 population 20 to 24 years old POP13_AGE_25_29: 2013 population 25 to 29 years old POP13_AGE_30_34: 2013 population 30 to 34 years old POP13_AGE_35_44: 2013 population 35 to 44 years old POP13_AGE_45_54: 2013 population 45 to 54 years old POP13_AGE_55_64: 2013 population 55 to 64 years old POP13_AGE_65_74: 2013 population 65 to 74 years old POP13_AGE_75_84: 2013 population 75 to 84 years old POP13_AGE_85_100: 2013 population 85 years and older POP13_WHITE: 2013 Non-Hispanic White POP13_BLACK: 2013 Non-Hispanic African AmericanPOP13_AIAN: 2013 Non-Hispanic American Indian or Alaska NativePOP13_ASIAN: 2013 Non-Hispanic Asian POP13_HNPI: 2013 Non-Hispanic Hawaiian Native or Pacific IslanderPOP13_HISPANIC: 2013 HispanicPOP13_MALE: 2013 Male POP13_FEMALE: 2013 Female POV13_WHITE: 2013 Non-Hispanic White below 100% Federal Poverty Level POV13_BLACK: 2013 Non-Hispanic African American below 100% Federal Poverty Level POV13_AIAN: 2013 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV13_ASIAN: 2013 Non-Hispanic Asian below 100% Federal Poverty Level POV13_HNPI: 2013 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV13_HISPANIC: 2013 Hispanic below 100% Federal Poverty Level POV13_TOTAL: 2013 Total population below 100% Federal Poverty Level POP13_TOTAL: 2013 Total PopulationAREA_SQMIL: Area in square milePOP13_DENSITY: Population per square mile.POV13_PERCENT: Poverty rate/percentage.How this data created?Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Population by age, race/ethnicity and gender are extracted from census data at blocks, and allocated to each area of split tracts by aggregating block-based population count. The poverty population is allocated to split tracts according to population proportion. The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is then attached to the split tract geography to create this data.Note:1. Population and poverty data estimated as of July 1, 2013. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterSince 2005, indigenous was the ethnicity in Latin America, by far, with the highest share of population living in poverty. In 2023, 20.4 percent of the Afro-descendant population had an average per capita income below the poverty line, meanwhile, the share of indigenous people living under the poverty line was more than double that, at 42.3 percent. Furthermore, Afro-descendants are the ethnic group that has experienced the largest poverty reduction throughout the analyzed period.
Facebook
TwitterThis data set contains New York City Police Department provided incident level data for domestic violence related offenses felony assaults, felony rapes and domestic incident reports) for calendar years 2020 and 2021. The data includes: date of incident, precinct of incident, borough of incident, suspect victim relationship, victim stated relationship description, victims race, victims sex, victims reported age, suspect race, suspect sex, suspect reported age, community district of incident, community district has high poverty rate, community district has low median household income, and high rate of unemployment. The following defines domestic violence incident report, domestic violence related felony assault and felony rapes: Domestic Violence Incident Report (DIR) is a form that police must complete every time they respond to a domestic incident, whether or not an arrest is made. A DIR would be filed for any domestic violence offense, including felony assault and felony rape.
Facebook
TwitterIn 2023 the poverty rate in the United States was highest among people between 18 and 24, with a rate of 16 percent for male Americans and a rate of 21 percent for female Americans. The lowest poverty rate for both men and women was for those aged between 45 and 54. What is the poverty line? The poverty line is a metric used by the U.S. Census Bureau to define poverty in the United States. It is a specific income level that is considered to be the bare minimum a person or family needs to meet their basic needs. If a family’s annual pre-tax income is below this income level, then they are considered impoverished. The poverty guideline for a family of four in 2021 was 26,500 U.S. dollars. Living below the poverty line According to the most recent data, almost one-fifth of African Americans in the United States live below the poverty line; the most out of any ethnic group. Additionally, over 7.42 million families in the U.S. live in poverty – a figure that has held mostly steady since 1990, outside the 2008 financial crisis which threw 9.52 million families into poverty by 2012. The poverty gender gap Wage inequality has been an ongoing discussion in U.S. discourse for many years now. The poverty gap for women is most pronounced during their child-bearing years, shrinks, and then grows again in old age. While progress has been made on the gender pay gap over the last 30 years, there are still significant disparities, even in occupations that predominantly employ men. Additionally, women are often having to spend more time attending to child and household duties than men.
Facebook
TwitterOn the U.S. Census Block Group level, the data for Poverty and Race and Ethnicity were overlaid on the map of North Carolina. If the NC DEQ definition of Underserved Communities was met (meaning the following criteria was present in the block group), the block group was selected. This criteria for the block group was compared to both the County and the State. It is selected as a potentially underserved block group if it meets the following criteria for Race/Ethnicity and Poverty: Racial/Ethnic composition: Share of nonwhites and Hispanic or Latino (of any race) is over fifty percent OR Share of nonwhites and Hispanic or Latino (of any race) is at least ten percent higher than County or State share. AND Poverty rate: Share of population experiencing poverty is over twenty percent AND Share of households in poverty is at least five percent higher than the County or State share.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortality rates in the United States vary based on race, individual economic status and neighborhood. Correlations among these variables in most urban areas have limited what conclusions can be drawn from existing research. Our study employs a unique factorial design of race, sex, age and individual poverty status, measuring time to death as an objective measure of health, and including both neighborhood economic status and income inequality for a sample of middle-aged urban-dwelling adults (N = 3675). At enrollment, African American and White participants lived in 46 unique census tracts in Baltimore, Maryland, which varied in neighborhood economic status and degree of income inequality. A Cox regression model for 9-year mortality identified a three-way interaction among sex, race and individual poverty status (p = 0.03), with African American men living below poverty having the highest mortality. Neighborhood economic status, whether measured by a composite index or simply median household income, was negatively associated with overall mortality (p
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2022 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP22: 2022 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2022) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP22CSA: 2020 census tract with 2022 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP22_AGE_0_4: 2022 population 0 to 4 years oldPOP22_AGE_5_9: 2022 population 5 to 9 years old POP22_AGE_10_14: 2022 population 10 to 14 years old POP22_AGE_15_17: 2022 population 15 to 17 years old POP22_AGE_18_19: 2022 population 18 to 19 years old POP22_AGE_20_44: 2022 population 20 to 24 years old POP22_AGE_25_29: 2022 population 25 to 29 years old POP22_AGE_30_34: 2022 population 30 to 34 years old POP22_AGE_35_44: 2022 population 35 to 44 years old POP22_AGE_45_54: 2022 population 45 to 54 years old POP22_AGE_55_64: 2022 population 55 to 64 years old POP22_AGE_65_74: 2022 population 65 to 74 years old POP22_AGE_75_84: 2022 population 75 to 84 years old POP22_AGE_85_100: 2022 population 85 years and older POP22_WHITE: 2022 Non-Hispanic White POP22_BLACK: 2022 Non-Hispanic African AmericanPOP22_AIAN: 2022 Non-Hispanic American Indian or Alaska NativePOP22_ASIAN: 2022 Non-Hispanic Asian POP22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific IslanderPOP22_HISPANIC: 2022 HispanicPOP22_MALE: 2022 Male POP22_FEMALE: 2022 Female POV22_WHITE: 2022 Non-Hispanic White below 100% Federal Poverty Level POV22_BLACK: 2022 Non-Hispanic African American below 100% Federal Poverty Level POV22_AIAN: 2022 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV22_ASIAN: 2022 Non-Hispanic Asian below 100% Federal Poverty Level POV22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV22_HISPANIC: 2022 Hispanic below 100% Federal Poverty Level POV22_TOTAL: 2022 Total population below 100% Federal Poverty Level POP22_TOTAL: 2022 Total PopulationAREA_SQMil: Area in square mile.POP22_DENSITY: Population per square mile.POV22_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2022. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2016 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP16: 2016 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2016) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP16CSA: 2010 census tract with 2016 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP16_AGE_0_4: 2016 population 0 to 4 years oldPOP16_AGE_5_9: 2016 population 5 to 9 years old POP16_AGE_10_14: 2016 population 10 to 14 years old POP16_AGE_15_17: 2016 population 15 to 17 years old POP16_AGE_18_19: 2016 population 18 to 19 years old POP16_AGE_20_44: 2016 population 20 to 24 years old POP16_AGE_25_29: 2016 population 25 to 29 years old POP16_AGE_30_34: 2016 population 30 to 34 years old POP16_AGE_35_44: 2016 population 35 to 44 years old POP16_AGE_45_54: 2016 population 45 to 54 years old POP16_AGE_55_64: 2016 population 55 to 64 years old POP16_AGE_65_74: 2016 population 65 to 74 years old POP16_AGE_75_84: 2016 population 75 to 84 years old POP16_AGE_85_100: 2016 population 85 years and older POP16_WHITE: 2016 Non-Hispanic White POP16_BLACK: 2016 Non-Hispanic African AmericanPOP16_AIAN: 2016 Non-Hispanic American Indian or Alaska NativePOP16_ASIAN: 2016 Non-Hispanic Asian POP16_HNPI: 2016 Non-Hispanic Hawaiian Native or Pacific IslanderPOP16_HISPANIC: 2016 HispanicPOP16_MALE: 2016 Male POP16_FEMALE: 2016 Female POV16_WHITE: 2016 Non-Hispanic White below 100% Federal Poverty Level POV16_BLACK: 2016 Non-Hispanic African American below 100% Federal Poverty Level POV16_AIAN: 2016 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV16_ASIAN: 2016 Non-Hispanic Asian below 100% Federal Poverty Level POV16_HNPI: 2016 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV16_HISPANIC: 2016 Hispanic below 100% Federal Poverty Level POV16_TOTAL: 2016 Total population below 100% Federal Poverty Level POP16_TOTAL: 2016 Total PopulationAREA_SQMIL: Area in square milePOP16_DENSITY: Population per square mile.POV16_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2016. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2021 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP21: 2021 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2021) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP21CSA: 2020 census tract with 2021 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP21_AGE_0_4: 2021 population 0 to 4 years oldPOP21_AGE_5_9: 2021 population 5 to 9 years old POP21_AGE_10_14: 2021 population 10 to 14 years old POP21_AGE_15_17: 2021 population 15 to 17 years old POP21_AGE_18_19: 2021 population 18 to 19 years old POP21_AGE_20_44: 2021 population 20 to 24 years old POP21_AGE_25_29: 2021 population 25 to 29 years old POP21_AGE_30_34: 2021 population 30 to 34 years old POP21_AGE_35_44: 2021 population 35 to 44 years old POP21_AGE_45_54: 2021 population 45 to 54 years old POP21_AGE_55_64: 2021 population 55 to 64 years old POP21_AGE_65_74: 2021 population 65 to 74 years old POP21_AGE_75_84: 2021 population 75 to 84 years old POP21_AGE_85_100: 2021 population 85 years and older POP21_WHITE: 2021 Non-Hispanic White POP21_BLACK: 2021 Non-Hispanic African AmericanPOP21_AIAN: 2021 Non-Hispanic American Indian or Alaska NativePOP21_ASIAN: 2021 Non-Hispanic Asian POP21_HNPI: 2021 Non-Hispanic Hawaiian Native or Pacific IslanderPOP21_HISPANIC: 2021 HispanicPOP21_MALE: 2021 Male POP21_FEMALE: 2021 Female POV21_WHITE: 2021 Non-Hispanic White below 100% Federal Poverty Level POV21_BLACK: 2021 Non-Hispanic African American below 100% Federal Poverty Level POV21_AIAN: 2021 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV21_ASIAN: 2021 Non-Hispanic Asian below 100% Federal Poverty Level POV21_HNPI: 2021 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV21_HISPANIC: 2021 Hispanic below 100% Federal Poverty Level POV21_TOTAL: 2021 Total population below 100% Federal Poverty Level POP21_TOTAL: 2021 Total PopulationAREA_SQMIL: Area in square milePOP21_DENSITY: Population per square mile.POV21_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2021. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterBy U.S. Census Bureau [source]
The U.S. Bureau of the Census' Current Population Survey, Annual Social and Economic Supplements, presents an insightful look into American society at any given time period. Through it's annual data, one can understand the makeup of a nation across a multitude of parameters--including income level distribution measures, poverty status characteristics and health insurance coverage broken down by age, race/ethnicity and gender.
This chart series is like a snapshot into America's past--allowing us to monitor both current progress made in regards to economic stability while also reflecting on the growth (or lack thereof) achieved over different decades in terms of racial discrepancies in poverty levels as well as an individual's ability present etc to maintain financial health. The series looks at data collected from 1959-2015; providing information on number/percentage all noninstitutionalized population (15+ years old) who are below or above poverty thresholds as well as median earnings for male/female earners adjusted for real inflation values (based on current dollars). Insights such as these enable us to gain key information about how economic disparities have fared during each year throughout this half century time span and how policy changes have impacted the overall wellbeing on a national level since then
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Introduction
This dataset contains information on the equivalence-adjusted income and poverty in the US from 1967 to 2015. It includes information on the population without health insurance coverage by state, total workers and full-time, year-round workers by sex and female-to-male earnings ratio, selected measures of equivalence-adjusted income dispersion, people in poverty by selected characteristics, and measures of income inequality. This guide will explain how to use this dataset effectively for analysis.
Data Overview
The datasets contain both summary statistics and detailed breakdowns for different categories throughout the years 1967 to 2015. In Table A1 you can find data on population without health insurance coverage by state during that time period. Table A4 contains total numbers of workers as well as real median earning details organized by sex and male/female earning ratios over time period in question. The tables A3 through 5 include more specific details related to measurements of Equivalence Adjusted Income Dispersion such as Gini Coefficient values.. Both table 2 & 3 provides detail breakdowns relating to Income distribution measurements between 2014 & 2015 along with other related statistical figures regarding individuals below poverty line during this time period based upon age , race , Hispanic Origin factors.
Data Cleaning/Preparation Specifics
This dataset follows a similar notation used throughout each table so it shouldn't be difficult understand what is being represented .However representing individual components like Gini Coefficient (TableA3) or Female ratio Vs Male earnings remains abstract in comparison especially when attempting visualization techniques (Charting). In order for users not familiar with certain terms like “Equivalence -Adjusted Income Dispersion” it would need explaining thoroughly or these terms should at least be highlighted & avoid confusing readers . Level out Missing Data that is within range statistically makes sense according “Census Technical Docs” . For example missing value data pertaining Individual Poverty estimates have based upon qualification requirements where numbers are rounded up after exchange calculations ( See official Raw Data column Notes available under Sources ).
Visualization Strategies
For effective visualization there needs be understanding between what counts supplied are actually representing For example: Column such as Difference Between Female & Male Earnings shown TableA4 helps gauge pay gap but difference between % Measures significantly important when charting any changes overtime diagrams or identifying movements visually from various bar /line graphs dealing this type data set . Other numerical aspects such Gender Ratio
- Tracking changes in poverty levels over time by state and ethnicity
- Examining the impact of government programs like the EITC and CTC on pov...
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2018 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP18: 2018 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2018) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP18CSA: 2010 census tract with 2018 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP18_AGE_0_4: 2018 population 0 to 4 years oldPOP18_AGE_5_9: 2018 population 5 to 9 years old POP18_AGE_10_14: 2018 population 10 to 14 years old POP18_AGE_15_17: 2018 population 15 to 17 years old POP18_AGE_18_19: 2018 population 18 to 19 years old POP18_AGE_20_44: 2018 population 20 to 24 years old POP18_AGE_25_29: 2018 population 25 to 29 years old POP18_AGE_30_34: 2018 population 30 to 34 years old POP18_AGE_35_44: 2018 population 35 to 44 years old POP18_AGE_45_54: 2018 population 45 to 54 years old POP18_AGE_55_64: 2018 population 55 to 64 years old POP18_AGE_65_74: 2018 population 65 to 74 years old POP18_AGE_75_84: 2018 population 75 to 84 years old POP18_AGE_85_100: 2018 population 85 years and older POP18_WHITE: 2018 Non-Hispanic White POP18_BLACK: 2018 Non-Hispanic African AmericanPOP18_AIAN: 2018 Non-Hispanic American Indian or Alaska NativePOP18_ASIAN: 2018 Non-Hispanic Asian POP18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific IslanderPOP18_HISPANIC: 2018 HispanicPOP18_MALE: 2018 Male POP18_FEMALE: 2018 Female POV18_WHITE: 2018 Non-Hispanic White below 100% Federal Poverty Level POV18_BLACK: 2018 Non-Hispanic African American below 100% Federal Poverty Level POV18_AIAN: 2018 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV18_ASIAN: 2018 Non-Hispanic Asian below 100% Federal Poverty Level POV18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV18_HISPANIC: 2018 Hispanic below 100% Federal Poverty Level POV18_TOTAL: 2018 Total population below 100% Federal Poverty Level POP18_TOTAL: 2018 Total PopulationAREA_SQMIL: Area in square milePOP18_DENSITY: Population per square mile.POV18_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterAmong Latin American countries in 2023, Colombia had the highest share of both Afro-descendants and indigenous people living impoverished, with 45.6 percent and 63.5 percent, respectively. Additionally, Colombia also had the highest share of indigenous people living under extreme poverty that year. Ecuador had the second-highest share of indigenous population whose average per capita income was below the poverty line, with 50.4 percent. Uruguay was the only nation where Afro-descendants were the ethnic group with the largest share of the poor population, as in the other selected countries such group was indigenous people.
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2019 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP19: 2019 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2019) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP19CSA: 2010 census tract with 2019 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP19_AGE_0_4: 2019 population 0 to 4 years oldPOP19_AGE_5_9: 2019 population 5 to 9 years old POP19_AGE_10_14: 2019 population 10 to 14 years old POP19_AGE_15_17: 2019 population 15 to 17 years old POP19_AGE_18_19: 2019 population 18 to 19 years old POP19_AGE_20_44: 2019 population 20 to 24 years old POP19_AGE_25_29: 2019 population 25 to 29 years old POP19_AGE_30_34: 2019 population 30 to 34 years old POP19_AGE_35_44: 2019 population 35 to 44 years old POP19_AGE_45_54: 2019 population 45 to 54 years old POP19_AGE_55_64: 2019 population 55 to 64 years old POP19_AGE_65_74: 2019 population 65 to 74 years old POP19_AGE_75_84: 2019 population 75 to 84 years old POP19_AGE_85_100: 2019 population 85 years and older POP19_WHITE: 2019 Non-Hispanic White POP19_BLACK: 2019 Non-Hispanic African AmericanPOP19_AIAN: 2019 Non-Hispanic American Indian or Alaska NativePOP19_ASIAN: 2019 Non-Hispanic Asian POP19_HNPI: 2019 Non-Hispanic Hawaiian Native or Pacific IslanderPOP19_HISPANIC: 2019 HispanicPOP19_MALE: 2019 Male POP19_FEMALE: 2019 Female POV19_WHITE: 2019 Non-Hispanic White below 100% Federal Poverty Level POV19_BLACK: 2019 Non-Hispanic African American below 100% Federal Poverty Level POV19_AIAN: 2019 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV19_ASIAN: 2019 Non-Hispanic Asian below 100% Federal Poverty Level POV19_HNPI: 2019 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV19_HISPANIC: 2019 Hispanic below 100% Federal Poverty Level POV19_TOTAL: 2019 Total population below 100% Federal Poverty Level POP19_TOTAL: 2019 Total PopulationAREA_SQMIL: Area in square milePOP19_DENSITY: Population per square mile.POV19_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides information on poverty-level wages in the United States from 1973 to 2022.
It includes data on both annual and hourly poverty-level wages, as well as wage shares for different income brackets.
The dataset is based on the Economic Policy Institute’s State of Working America Data Library, which offers comprehensive economic data for analyzing trends and patterns in the labor market.
If you find this dataset valuable, don't forget to hit the upvote button! 😊💝
USA Wage Comparison for College vs. High School
Productivity and Hourly Compensation
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2017 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP17: 2017 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2017) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP17CSA: 2010 census tract with 2017 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP17_AGE_0_4: 2017 population 0 to 4 years oldPOP17_AGE_5_9: 2017 population 5 to 9 years old POP17_AGE_10_14: 2017 population 10 to 14 years old POP17_AGE_15_17: 2017 population 15 to 17 years old POP17_AGE_18_19: 2017 population 18 to 19 years old POP17_AGE_20_44: 2017 population 20 to 24 years old POP17_AGE_25_29: 2017 population 25 to 29 years old POP17_AGE_30_34: 2017 population 30 to 34 years old POP17_AGE_35_44: 2017 population 35 to 44 years old POP17_AGE_45_54: 2017 population 45 to 54 years old POP17_AGE_55_64: 2017 population 55 to 64 years old POP17_AGE_65_74: 2017 population 65 to 74 years old POP17_AGE_75_84: 2017 population 75 to 84 years old POP17_AGE_85_100: 2017 population 85 years and older POP17_WHITE: 2017 Non-Hispanic White POP17_BLACK: 2017 Non-Hispanic African AmericanPOP17_AIAN: 2017 Non-Hispanic American Indian or Alaska NativePOP17_ASIAN: 2017 Non-Hispanic Asian POP17_HNPI: 2017 Non-Hispanic Hawaiian Native or Pacific IslanderPOP17_HISPANIC: 2017 HispanicPOP17_MALE: 2017 Male POP17_FEMALE: 2017 Female POV17_WHITE: 2017 Non-Hispanic White below 100% Federal Poverty Level POV17_BLACK: 2017 Non-Hispanic African American below 100% Federal Poverty Level POV17_AIAN: 2017 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV17_ASIAN: 2017 Non-Hispanic Asian below 100% Federal Poverty Level POV17_HNPI: 2017 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV17_HISPANIC: 2017 Hispanic below 100% Federal Poverty Level POV17_TOTAL: 2017 Total population below 100% Federal Poverty Level POP17_TOTAL: 2017 Total PopulationAREA_SQMIL: Area in square milePOP17_DENSITY: Population per square mile.POV17_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2017. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.