100+ datasets found
  1. Fastest growing housing markets worldwide 2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Fastest growing housing markets worldwide 2025 [Dataset]. https://www.statista.com/statistics/1041586/price-growth-fastest-growing-home-markets-worldwide/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Turkey experienced the highest annual change in house prices in 2025, followed by North Macedonia and Portugal. In the second quarter of the year, the nominal house price in Turkey grew by **** percent, while in North Macedonia and Portugal, the increase was **** and **** percent, respectively. Meanwhile, some countries saw prices fall throughout the year. That has to do with an overall cooling of the global housing market that started in 2022. When accounting for inflation, house price growth was slower, and even more countries saw the market shrink.

  2. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  3. FMHPI house price index change 1990-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). FMHPI house price index change 1990-2024 [Dataset]. https://www.statista.com/statistics/275159/freddie-mac-house-price-index-from-2009/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.

  4. Countries with the highest inflation-adjusted house price growth worldwide...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Countries with the highest inflation-adjusted house price growth worldwide 2025 [Dataset]. https://www.statista.com/statistics/237527/house-price-changes-five-year-trend/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the second quarter of 2025, North Macedonia, Portugal, and Bulgaria registered the highest house price increase in real terms (adjusted for inflation). In North Macedonia, house prices outgrew inflation by nearly ** percent. When comparing the nominal price change, which does not take inflation into consideration, the average house price growth was even higher.

    Meanwhile, many countries experienced declining prices, with Hong Kong recording the biggest decline, at ***** percent. That has to do with a broader trend of a slowing global housing market.

  5. T

    United States Existing Home Sales Prices

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Oct 31, 2025
    Area covered
    United States
    Description

    Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  7. M

    Mexico House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). Mexico House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/mexico/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    Mexico
    Description

    Key information about House Prices Growth

    • Mexico house prices grew 8.9% YoY in Sep 2025, following an increase of 8.7% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 2006 to Sep 2025, with an average growth rate of 10.2%.
    • House price data reached an all-time high of 11.7% in Mar 2023 and a record low of 2.2% in Jun 2010.

    CEIC calculates House Price Growth from quarterly House Price Index. Federal Mortgage Society provides House Price Index with base 2017=100.

  8. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Mexico, Germany, Japan, Europe, Brazil, France, United Kingdom, North America, Canada, United States
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 55% growth during the forecast period.
    By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
    By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 41.01 billion
    Market Future Opportunities: USD 485.20 billion
    CAGR : 4.5%
    APAC: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
    Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period.

    Request Free Sample

    The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.

    Request Free Sample

    Regional Analysis

    APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample

    The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.

    With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.

    Market Dynamics

    Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf

  9. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  10. c

    Data from: Comparing Two House-Price Booms

    • clevelandfed.org
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2024). Comparing Two House-Price Booms [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2024/ec-202404-comparing-two-house-price-booms
    Explore at:
    Dataset updated
    Feb 27, 2024
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Description

    In this Economic Commentary , we compare characteristics of the 2000–2006 house-price boom that preceded the Great Recession to the house-price boom that began in 2020 during the COVID-19 pandemic. These two episodes of high house-price growth have important differences, including the behavior of rental rates, the dynamics of housing supply and demand, and the state of the mortgage market. The absence of changes in fundamentals during the 2000s is consistent with the literature emphasizing house-price beliefs during this prior episode. In contrast to during the 2000s boom, changes in fundamentals (including rent and demand growth) played a more dominant role in the 2020s house-price boom.

  11. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  12. Nominal house price index in select countries in APAC region 2010-2025, by...

    • statista.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Nominal house price index in select countries in APAC region 2010-2025, by quarter [Dataset]. https://www.statista.com/topics/5466/global-housing-market/
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In 2025, India was the country with the highest increase in house prices since 2010 among the Asia-Pacific (APAC) countries under observation. In the second quarter of the year, the nominal house price index in India reached over 359 index points. This suggests an increase of 259 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning when adjusted for inflation, price growth in real terms was slower.

  13. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Sep 30, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  14. S

    Slovenia House Prices Growth

    • ceicdata.com
    Updated Dec 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2017). Slovenia House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/slovenia/house-prices-growth
    Explore at:
    Dataset updated
    Dec 15, 2017
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2021 - Sep 1, 2024
    Area covered
    Slovenia
    Description

    Key information about House Prices Growth

    • Slovenia house prices grew 7.9% YoY in Sep 2024, following an increase of 6.7% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 2008 to Sep 2024, with an average growth rate of 4.8%.
    • House price data reached an all-time high of 17.0% in Mar 2022 and a record low of -12.6% in Sep 2009.

    CEIC calculates House Prices Growth from quarterly House Price Index. The Statistical Office of the Republic of Slovenia provides House Price Index with base Same Quarter Previous Year=100. House Prices Growth covers all secondary market transactions with dwellings and family houses using the Real Estate Market Register.

  15. F

    All-Transactions House Price Index for the United States

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for the United States [Dataset]. https://fred.stlouisfed.org/series/USSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.

  16. F

    Real Residential Property Prices for United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for United States [Dataset]. https://fred.stlouisfed.org/series/QUSR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.

  17. USA House Prices

    • kaggle.com
    zip
    Updated Jul 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fırat Özcan (2024). USA House Prices [Dataset]. https://www.kaggle.com/datasets/fratzcan/usa-house-prices/code
    Explore at:
    zip(121422 bytes)Available download formats
    Dataset updated
    Jul 21, 2024
    Authors
    Fırat Özcan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    Real estate markets are of great importance for both local and international investors. Sydney and Melbourne are two dynamic markets where economic and social factors have significant impacts on property prices. Below is a detailed description of each feature:

    1. Date: The date when the property was sold. This feature helps in understanding the temporal trends in property prices.
    2. Price:The sale price of the property in USD. This is the target variable we aim to predict.
    3. Bedrooms:The number of bedrooms in the property. Generally, properties with more bedrooms tend to have higher prices.
    4. Bathrooms: The number of bathrooms in the property. Similar to bedrooms, more bathrooms can increase a property’s value.
    5. Sqft Living: The size of the living area in square feet. Larger living areas are typically associated with higher property values.
    6. Sqft Lot:The size of the lot in square feet. Larger lots may increase a property’s desirability and value.
    7. Floors: The number of floors in the property. Properties with multiple floors may offer more living space and appeal.
    8. Waterfront: A binary indicator (1 if the property has a waterfront view, 0 other- wise). Properties with waterfront views are often valued higher.
    9. View: An index from 0 to 4 indicating the quality of the property’s view. Better views are likely to enhance a property’s value.
    10. Condition: An index from 1 to 5 rating the condition of the property. Properties in better condition are typically worth more.
    11. Sqft Above: The square footage of the property above the basement. This can help isolate the value contribution of above-ground space.
    12. Sqft Basement: The square footage of the basement. Basements may add value depending on their usability.
    13. Yr Built: The year the property was built. Older properties may have historical value, while newer ones may offer modern amenities.
    14. Yr Renovated: The year the property was last renovated. Recent renovations can increase a property’s appeal and value.
    15. Street: The street address of the property. This feature can be used to analyze location-specific price trends.
    16. City: The city where the property is located. Different cities have distinct market dynamics.
    17. Statezip: The state and zip code of the property. This feature provides regional context for the property.
    18. Country: The country where the property is located. While this dataset focuses on properties in Australia, this feature is included for completeness.

    If you like this dataset, please contribute by upvoting

  18. New York Housing Market

    • kaggle.com
    Updated Jan 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2024). New York Housing Market [Dataset]. http://doi.org/10.34740/kaggle/dsv/7351086
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Nidula Elgiriyewithana ⚡
    Area covered
    New York
    Description

    Description:

    This dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.

    DOI

    Key Features:

    • BROKERTITLE: Title of the broker
    • TYPE: Type of the house
    • PRICE: Price of the house
    • BEDS: Number of bedrooms
    • BATH: Number of bathrooms
    • PROPERTYSQFT: Square footage of the property
    • ADDRESS: Full address of the house
    • STATE: State of the house
    • MAIN_ADDRESS: Main address information
    • ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
    • LOCALITY: Locality information
    • SUBLOCALITY: Sublocality information
    • STREET_NAME: Street name
    • LONG_NAME: Long name
    • FORMATTED_ADDRESS: Formatted address
    • LATITUDE: Latitude coordinate of the house
    • LONGITUDE: Longitude coordinate of the house

    Potential Use Cases:

    • Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
    • Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
    • Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
    • Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
    • Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.

    If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you

  19. F

    All-Transactions House Price Index for Florida

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Florida [Dataset]. https://fred.stlouisfed.org/series/FLSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Florida
    Description

    Graph and download economic data for All-Transactions House Price Index for Florida (FLSTHPI) from Q1 1975 to Q3 2025 about appraisers, FL, HPI, housing, price index, indexes, price, and USA.

  20. House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zafar (2024). House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
    Explore at:
    zip(29372 bytes)Available download formats
    Dataset updated
    Sep 21, 2024
    Authors
    Zafar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House Price Prediction Dataset.

    The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

    1. Dataset Features

    The dataset is designed to capture essential attributes for predicting house prices, including:

    Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.

    2. Feature Distributions

    Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.

    3. Correlation Between Features

    A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.

    4. Potential Use Cases

    The dataset is well-suited for various machine learning and data analysis applications, including:

    House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.

    5. Limitations and ...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Fastest growing housing markets worldwide 2025 [Dataset]. https://www.statista.com/statistics/1041586/price-growth-fastest-growing-home-markets-worldwide/
Organization logo

Fastest growing housing markets worldwide 2025

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Turkey experienced the highest annual change in house prices in 2025, followed by North Macedonia and Portugal. In the second quarter of the year, the nominal house price in Turkey grew by **** percent, while in North Macedonia and Portugal, the increase was **** and **** percent, respectively. Meanwhile, some countries saw prices fall throughout the year. That has to do with an overall cooling of the global housing market that started in 2022. When accounting for inflation, house price growth was slower, and even more countries saw the market shrink.

Search
Clear search
Close search
Google apps
Main menu