12 datasets found
  1. Trump-Era Tariffs by Country (2025) CSV FILE

    • kaggle.com
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mr.Soulaimane (2025). Trump-Era Tariffs by Country (2025) CSV FILE [Dataset]. https://www.kaggle.com/datasets/soulaimanebenayad/trump-era-tariffs-by-country-2025-csv-file
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    Kaggle
    Authors
    Mr.Soulaimane
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset presents country-level tariff rates charged to the United States during the Trump administration, alongside discounted reciprocal tariffs the U.S. might have charged in return. It highlights the trade imbalances and protectionist policies in place at the time. Useful for trade policy analysis, political science research, and data visualization. The values were originally expressed in decimal format (e.g., 0.10 = 10%) but have been converted to percentage format for clarity. 📊 Column Descriptions ..Country The name of the country or economic union (e.g., China, European Union).

    ..Tariffs charged to the USA (%) The average tariff percentage imposed by each country on goods imported from the United States.

    ..U.S.A. Discounted Reciprocal Tariffs (%) Hypothetical reciprocal tariff rates the U.S. would charge if it applied the same discount factor used by the other country toward the U.S.

  2. COVID-19 WORLDWIDE DATASET

    • kaggle.com
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Valles (2025). COVID-19 WORLDWIDE DATASET [Dataset]. https://www.kaggle.com/jamesvalles/covid19-worldwide-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    James Valles
    Area covered
    World
    Description

    Context

    Each workbook contains daily COVID-19 stats by each country affected. Additional sheets have also been added for more specific breakdown by different locations within Australia, Canada, China, and USA. Worked with BNO News to put this together. Additional credits include: Michael Van Poppel and Carlos Robles. Github updated every 24 hrs can be found here: https://github.com/jamesvalles/CORONAVIUS-COVID-19-DAILYSTATS

  3. k

    Value of Imports by Country and Country Group

    • datasource.kapsarc.org
    • data.kapsarc.org
    • +1more
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Value of Imports by Country and Country Group [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-arabia-source-of-imports-by-country-1984-2014/
    Explore at:
    Dataset updated
    Nov 15, 2024
    Description

    Explore the Saudi Arabia Source of Imports by Country dataset to analyze import trends and exporters. Gain insights into the trade relationships between Saudi Arabia and countries such as Argentina, Australia, China, India, United States of America, and more.

    Imports, Exporters, SAMA Annual

    Saudi Arabia, Argentina, Australia, Austria, Bahrain, Bangladesh, Belgium, Brazil, Canada, China, Egypt, Ethiopia, Finland, France, Germany, Greece, Guatemala, India, Indonesia, Iraq, Ireland, Italy, Japan, Jordan, Kenya, Kuwait, Lebanon, Malaysia, Mexico, Morocco, New Zealand, Oman, Pakistan, Qatar, Russia, Singapore, South Africa, South Korea, Spain, Sudan, Sweden, Switzerland, Syria, Thailand, Turkey, Ukraine, United Arab Emirates, United States of America, Venezuela, Yemen Follow data.kapsarc.org for timely data to advance energy economics research..Unit :MillionCurrency :Riyals- Not a member of the European Union during this year.Source: General Authority for Statistics.

  4. d

    Year, Country wise Production and Consumption of Cotton

    • dataful.in
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year, Country wise Production and Consumption of Cotton [Dataset]. https://dataful.in/datasets/21211
    Explore at:
    xlsx, application/x-parquet, csvAvailable download formats
    Dataset updated
    Apr 18, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    Countries of the World
    Variables measured
    Quantity
    Description

    The dataset contains the production and consumption of cotton in major countries like USA, Pakistan, Brazil, China, and Uzbekistan.

  5. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. T

    China Unemployment Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Unemployment Rate [Dataset]. https://tradingeconomics.com/china/unemployment-rate
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 2002 - Apr 30, 2025
    Area covered
    China
    Description

    Unemployment Rate in China decreased to 5.10 percent in April from 5.20 percent in March of 2025. This dataset provides - China Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. f

    Data from: S1 Dataset -

    • figshare.com
    xlsx
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yufei Lei (2024). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0302845.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Yufei Lei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An increase in a currency internationalization levels can positively impact its credibility in international economic activities, and expand the effective demand and optimize the supply structure for the country’s financial service trade. In this way, a state can improve its financial service trade competitiveness in the international market. This study builds a vector autoregressive model based on time-series data of China-US financial services trade from 2010 to 2021, analyzes the impact of different quantitative indicators of RMB internationalization on this trade from the impulse response results, and validates the conclusions using various inspection methods. The results show that the increase in RMB internationalization helps to narrow the China-US financial services trade balance, but with a significant lag. And this effect is heterogeneous in different dimensions, demonstrated by the fact that the development of overseas RMB securities business is more important for the level of RMB internationalization to narrow the China-US financial services trade balance. Finally, among the specific measures to improve its financial services trade, China should focus on developing the international competitiveness of the traditional RMB deposit and loan financial sector, while the competition in the overseas market for high value-added financial businesses must also not be neglected. Furthermore, China needs to implement more targeted RMB internationalization development policies at different levels in the future to provide high-quality financial services to the rest of the world and aid in the economic recovery of the world in the "post-pandemic" era.

  8. Urban Country Maps

    • kaggle.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    viswachaitanyasai (2024). Urban Country Maps [Dataset]. https://www.kaggle.com/datasets/viswachaitanyasai/urban-country-maps
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    viswachaitanyasai
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by viswachaitanyasai

    Released under MIT

    Contents

  9. T

    MANUFACTURING PMI by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). MANUFACTURING PMI by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/manufacturing-pmi
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for MANUFACTURING PMI reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. B

    International Cigarette Consumption Database v1.3

    • borealisdata.ca
    • search.dataone.org
    Updated Apr 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman (2022). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Borealis
    Authors
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7

    Time period covered
    1970 - 2015
    Dataset funded by
    Research Council of Norway
    Canadian Institutes of Health Research
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Iranian Tobacco Co. Institut National de la Statistique (Tunisia) HM Revenue & Customs (UK) Eidgenössisches Finanzdepartement EFD/Département...

  11. T

    PRIVATE DEBT TO GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). PRIVATE DEBT TO GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/private-debt-to-gdp
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for PRIVATE DEBT TO GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  12. GDP-BY-COUNTRY-2022

    • kaggle.com
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muneeb_Qureshi3131 (2024). GDP-BY-COUNTRY-2022 [Dataset]. https://www.kaggle.com/datasets/muneebqureshi3131/gdp-by-country/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Muneeb_Qureshi3131
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.

    Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Mr.Soulaimane (2025). Trump-Era Tariffs by Country (2025) CSV FILE [Dataset]. https://www.kaggle.com/datasets/soulaimanebenayad/trump-era-tariffs-by-country-2025-csv-file
Organization logo

Trump-Era Tariffs by Country (2025) CSV FILE

A comparative dataset of tariffs imposed on the U.S. VS hypothetical reciprocal

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 6, 2025
Dataset provided by
Kaggle
Authors
Mr.Soulaimane
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

This dataset presents country-level tariff rates charged to the United States during the Trump administration, alongside discounted reciprocal tariffs the U.S. might have charged in return. It highlights the trade imbalances and protectionist policies in place at the time. Useful for trade policy analysis, political science research, and data visualization. The values were originally expressed in decimal format (e.g., 0.10 = 10%) but have been converted to percentage format for clarity. 📊 Column Descriptions ..Country The name of the country or economic union (e.g., China, European Union).

..Tariffs charged to the USA (%) The average tariff percentage imposed by each country on goods imported from the United States.

..U.S.A. Discounted Reciprocal Tariffs (%) Hypothetical reciprocal tariff rates the U.S. would charge if it applied the same discount factor used by the other country toward the U.S.

Search
Clear search
Close search
Google apps
Main menu