22 datasets found
  1. Buoy BahiaDePalma data

    • apps.socib.es
    Updated May 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joaquín Tintoré (2022). Buoy BahiaDePalma data [Dataset]. http://doi.org/10.25704/s6jb-ck61
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Joaquín Tintoré
    Area covered
    Dataset funded by
    Govern de les Illes Balears
    Ministerio de Ciencia, Innovación y Universidades
    Description

    Data produced in the platform Buoy BahiaDePalma. It's compound by: Conductivity and Temperature Recorder, Current profiler, Currentmeter, Multiparameter probe, Oceanographic Buoy, Status, Waves recorder, Weather Station data

  2. i

    SOCIB glider facility

    • sextant.ifremer.fr
    null, www:link
    Updated Jun 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SOCIB (2018). SOCIB glider facility [Dataset]. https://sextant.ifremer.fr/geonetwork/srv/api/records/e88b045f-b5f5-4bac-bb72-c2e03ca7cba2
    Explore at:
    null, www:linkAvailable download formats
    Dataset updated
    Jun 4, 2018
    Dataset provided by
    SOCIB
    Area covered
    Description

    The SOCIB Glider Facility is an example of new technologies being progressively implemented in coastal to open ocean regions allowing autonomous and sustained high-resolution monitoring of specific areas. SOCIB-GF is fully operational in JERICO-NEXT and since 2006 has accomplished 64 missions, 1.244 days in water, 14.555 nm navigated with 39.378 vertical profiles collected. SOCIB-GF human team is composed out of 2 full-time engineers, 1 full-time technician, 2 part-time field-technicians (for at sea operations), 2 part time engineers (for glider data management) and 2 part-time experienced scientists. An intense and fruitful collaboration with IMEDEA (CSIC-UIB) team also exists since the origin of glider operations. The fleet in 2016 consists of 7 Slocum gliders and 2 iRobot Seagliders, equipped for collecting both physical (T, S) and biogeochemical data (fluorescence, oxygen, etc.) at high spatial resolutions (2km). SOCIB-GF includes a pressure chamber (1.000 m) as well as ballasting and operations labs. It also has access to other SOCIB facilities such as (1) ETD (Engineering & Technology Development): Hurricane Zodiac 9.2 m RIB, Lab-Van and harbour warehouse; (2) SOCIB-R/V: a 24 m coastal catamaran and (3) Data Center: including data management, public repository, on-line web-based platform tracker -for mission monitoring- and development of tools such as the glider processing toolbox (Troupin et al., Methods in Oceanog., 2015, - freely available scripts available at https://github.com/socib/glider_toolbox).

  3. s

    Data from: SOCIB Glider - Canales Endurance Line

    • apps.socib.es
    Updated 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albert Miralles; Manuel Rubio; Patricia Rivera; Nikolaos Zarokanellos; Marc Torner; Miguel Charcos; Juan Gabriel Férnandez; Pau Balager; Niko Wirth; Benjamín Casas; Josep Baeza; Noemí Calafat; Mélanie Juza; Xisco Notario; Emma Heslop; Simón Ruiz; Cristian Muñoz; John Allen; Joaquín Tintoré (2019). SOCIB Glider - Canales Endurance Line [Dataset]. http://doi.org/10.25704/jd07-sv9
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    datacite
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Albert Miralles; Manuel Rubio; Patricia Rivera; Nikolaos Zarokanellos; Marc Torner; Miguel Charcos; Juan Gabriel Férnandez; Pau Balager; Niko Wirth; Benjamín Casas; Josep Baeza; Noemí Calafat; Mélanie Juza; Xisco Notario; Emma Heslop; Simón Ruiz; Cristian Muñoz; John Allen; Joaquín Tintoré
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    Govern de les Illes Balears (http://www.caib.es/)
    Ministerio de ciencia, innovación y universidades (http://www.ciencia.gob.es/)
    Description

    SOCIB Glider Missions - Canales Endurance Line - was initiated in 2011, with in kind collaboration of CSIC (IMEDEA), covering both the Mallorca and Ibiza channel in a semi-continuous operational mode and sampling physical and biogeochemical observations. The Ibiza channel is a well-established biodiversity hotspot and accordingly more intensive monitoring of the Ibiza channel is carried out to capture the mesoscale and submesoscale structures and their relation to the weekly to seasonal and annual/inter-annual variability. On the canales endurance line, ocean gliders making repeated dives from the surface to 1000 m interior of the ocean, repeating the cycle every ~5 hours, and traveling ~5 km in the horizontal during each dive. The canales endurance line is covering both the Mallorca and Ibiza channel in a semi-continuous operational mode. The glider missions typically last about 60 to 90 days, providing 6-10 sections of the Ibiza channel and 2 sections of the Mallorca channel. Since 2011 the Canales Endurance line has completed 108 glider missions, covered 53000 km over the ground, and has more than 97000 physical and biogeochemical profiles.

  4. s

    Data from: SOCIB TNA Abacus

    • apps.socib.es
    Updated 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albert Miralles; Manuel Rubio; Patricia Rivera; Nikolaos Zarokanellos; Miguel Charcos; Juan Gabriel Férnandez; Giorgio Budillon; Yuri Cotroneo; Giuseppe Aulicino; Pau Balager; Niko Wirth; Benjamín Casas; Josep Baeza; Noemí Calafat; Mélanie Juza; Xisco Notario; Emma Heslop; Simón Ruiz; Cristian Muñoz; John Allen; Giannetta Fusco; Joaquín Tintoré (2018). SOCIB TNA Abacus [Dataset]. http://doi.org/10.25704/b200-3vf5
    Explore at:
    Dataset updated
    2018
    Dataset provided by
    datacite
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Albert Miralles; Manuel Rubio; Patricia Rivera; Nikolaos Zarokanellos; Miguel Charcos; Juan Gabriel Férnandez; Giorgio Budillon; Yuri Cotroneo; Giuseppe Aulicino; Pau Balager; Niko Wirth; Benjamín Casas; Josep Baeza; Noemí Calafat; Mélanie Juza; Xisco Notario; Emma Heslop; Simón Ruiz; Cristian Muñoz; John Allen; Giannetta Fusco; Joaquín Tintoré
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    European Union Seventh Framework Programme
    Horizon 2020 Framework Programme
    Description

    The project aims at assessing the importance of a new monitoring line across the Algerian Basin between Palma de Mallorca and the Algerian Coast. The Algerian Basin (AB) is located in the south of the Western Mediterranean Sea and is characterized by the presence of fairly fresh surface waters coming from the Atlantic (Atlantic Water- AW) and the more saline waters from the northwestern Mediterranean region interacting at different scales from basin-scale to mesoscale structures. The project aims at assessing the importance of a monitoring line across the AB between Palma de Mallorca and the Algerian coasts. ABACUS project will contribute to data collection in The Southern European Seas, one of the main EU maritime policy objectives, as outlined in the Marine Strategy Framework Directive through a multi-platform study of the mesoscale variability and main physical and biological characteristics of the AC system.

  5. d

    Physical oceanography on standard levels during SOCIB cruise SOCIB_1212

    • search.dataone.org
    • doi.pangaea.de
    Updated Jan 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lopez-Jurado, Jose Luis; Aparicio-Gonzalez, Alberto; Balbin, Rosa; Alonso, Juan Carlos; Amengual, Bartomeu; Jansa, Javier; Garcia, Maria Carmen; Moya, Francina; Serra, Mariano; Vargas-Yanez, Manolo; Coastal Ocean Observing and Forecasting System, Balearic Islands; Tintore, Joaquín (2018). Physical oceanography on standard levels during SOCIB cruise SOCIB_1212 [Dataset]. http://doi.org/10.1594/PANGAEA.831912
    Explore at:
    Dataset updated
    Jan 19, 2018
    Dataset provided by
    PANGAEA Data Publisher for Earth and Environmental Science
    Authors
    Lopez-Jurado, Jose Luis; Aparicio-Gonzalez, Alberto; Balbin, Rosa; Alonso, Juan Carlos; Amengual, Bartomeu; Jansa, Javier; Garcia, Maria Carmen; Moya, Francina; Serra, Mariano; Vargas-Yanez, Manolo; Coastal Ocean Observing and Forecasting System, Balearic Islands; Tintore, Joaquín
    Time period covered
    Dec 19, 2012
    Area covered
    Description

    No description is available. Visit https://dataone.org/datasets/a597343a7e7413ecf82e8fe9c814da8d for complete metadata about this dataset.

  6. i

    SOCIB Beach Lifeguards (SocorristaIB)

    • sextant.ifremer.fr
    Updated Oct 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SOCIB (2018). SOCIB Beach Lifeguards (SocorristaIB) [Dataset]. https://sextant.ifremer.fr/record/68265b3b-acea-4402-b2dc-3895902e10b2/
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Oct 3, 2018
    Dataset provided by
    MARIS
    Authors
    SOCIB
    Area covered
    Description

    Beach Lifeguards (SocorristaIB) Seaboard (http://seaboard.socib.es/lifeguard) and SocorristaIB mobile app (https://play.google.com/store/apps/details?id=com.socib.lifeguards&hl=en) provide atmospheric and oceanographic variables interpolated from numerical prediction models (oceanographic and atmospheric) at the points closest to the Balearic 352 beaches where there lifeguard service mesh.

  7. s

    SOCIB Argo profiling floats data and metadata

    • apps.socib.es
    • apps-test.priv.socib.es
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lara Díaz-Barroso; Irene Lizarán; Inmaculada Ruiz-Parrado; Andrea Casaucao; Matteo Marasco; Juan Gabriel Fernández; Xisco Notario; Mélanie Juza; Benjamín Casas; Emma Reyes; Nikolaus Wirth; Pau Balaguer-Huguet; Josep Baeza-Montals; Carlos Castilla; Noemí Calafat; Juan Miguel Villoria; Miquel Àngel Rújula; Joaquín Tintoré (2024). SOCIB Argo profiling floats data and metadata [Dataset]. http://doi.org/10.25704/yb5v-yx90
    Explore at:
    Dataset updated
    Sep 19, 2024
    Dataset provided by
    DataCite
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Lara Díaz-Barroso; Irene Lizarán; Inmaculada Ruiz-Parrado; Andrea Casaucao; Matteo Marasco; Juan Gabriel Fernández; Xisco Notario; Mélanie Juza; Benjamín Casas; Emma Reyes; Nikolaus Wirth; Pau Balaguer-Huguet; Josep Baeza-Montals; Carlos Castilla; Noemí Calafat; Juan Miguel Villoria; Miquel Àngel Rújula; Joaquín Tintoré
    Area covered
    Dataset funded by
    Spanish National Research Councilhttp://www.csic.es/
    Unión Europea NextGenerationEU/PRTR
    Euro-Argo Research Infrastructure Sustainability and Enhancement (Euro-Argo RISE)
    Ministerio de Ciencia, Innovación y Universidades/Agencia Estatal de Investigación (España)
    Govern de les Illes Balears
    Ministerio de Ciencia, Innovación y Universidades
    Description

    The Argo observing network is composed of profiling floats which collect information from the ocean surface to subsurface. These floats collect vertical profiles of ocean temperature and salinity, and some also measure biogeochemical ocean properties. These data provide information about the 4-dimensional ocean, helping to understand the oceans role in the Earth s climate system and to improve future climate change estimates. As part of the Euro-Argo ERIC (European Research Infrastructure Consortium), SOCIB has contributed to the program in the Western Mediterranean Sea since 2011. Each year, SOCIB deploys three floats to maintain a set of five floats, distributed across the sea with an average spacing of 2 degrees. This ensures continuous observation capability. This dataset compiles SOCIB s contribution to Euro-Argo ERIC since January 2011.

  8. c

    SOCIB_ENL_Canales_May2017

    • data.utm.csic.es
    Updated May 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SOCIB, Balearic Islands Coastal Observing and Forecasting System (2017). SOCIB_ENL_Canales_May2017 [Dataset]. https://data.utm.csic.es/geonetwork/srv/api/records/urn:SDN:CSR:LOCAL:BSH20173302
    Explore at:
    Dataset updated
    May 12, 2017
    Dataset authored and provided by
    SOCIB, Balearic Islands Coastal Observing and Forecasting System
    Time period covered
    May 12, 2017 - May 14, 2017
    Area covered
    Description

    SOCIB-Canales is a seasonal cruise developed by SOCIB team that includes a mesh of 23 CTD stations in the Ibiza Channel and a radial (with 10 stations) crossing the Mallorca channel.

  9. E

    HF RADAR TOTAL - Ibiza

    • erddap.emodnet-physics.eu
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenzo Corgnati (2025). HF RADAR TOTAL - Ibiza [Dataset]. https://erddap.emodnet-physics.eu/erddap/info/HFRADAR_IBIZA_Totals/index.html
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Copernicus Marine Service
    Authors
    Lorenzo Corgnati
    License

    https://marine.copernicus.eu/user-corner/service-commitments-and-licencehttps://marine.copernicus.eu/user-corner/service-commitments-and-licence

    Time period covered
    Feb 1, 2019 - Jun 24, 2025
    Area covered
    Variables measured
    CCOV, EWCS, EWCT, GDOP, NSCS, NSCT, time, depth, QCflag, CSPD_QC, and 6 more
    Description

    HF RADAR TOTAL - Ibiza _NCProperties=version=2,netcdf=4.9.3-development,hdf5=1.12.2 area=Ibiza Channel calibration_link=FORM: ereyes@socib.es; GALF: ereyes@socib.es calibration_type=FORM: APM; GALF: APM cdm_data_type=Grid citation=These data were collated within the Copernicus Marine Service (In Situ) and EMODnet collaboration framework. Data is made freely available by the Copernicus Marine Service and the programs that contribute to it. These data are collected and processed by SOCIB (Balearic Island Coastal and Observing Forecasting System) with the support of different projects: Jerico-Next, INCREASE, CMEMS-INSTAC phase II and IBISAR comment=HFR is nowadays the unique land-based remote sensing technology providing continuous maps of near-real surface currents (0.9m) over wide areas (out of about 85 km from near shore) whit high-spatial (3 km) and temporal resolution (hourly). Two or mode HFR sites are needed for computing the map of total surface current vectors in the overlapping coverage area. Total velocities are derived using least square fit that maps radial velocities measured from individual sites onto a cartesian grid. The final product is a map of the horizontal components of the ocean currents on a regular grid in the area of overlap of two or more radar stations. Conventions=CF-1.11 Copernicus-InSituTAC-FormatManual-2.0.0 Copernicus-InSituTAC-ParametersList-3.3.0 Copernicus-InSituTAC-AttributesList-1.0.0 data_mode=R doa_estimation_method=FORM: Direction Finding; GALF: Direction Finding Easternmost_Easting=1.400685 format_version=2.0 geospatial_lat_max=39.1067 geospatial_lat_min=38.32299 geospatial_lat_resolution=0.027024482758620662 geospatial_lat_units=degrees_north geospatial_lon_max=1.400685 geospatial_lon_min=0.5038552 geospatial_lon_resolution=0.03449345384615385 geospatial_lon_units=degrees_east history=Data measured from 2025-06-23T23:30:00Z to 2025-06-24T09:30:00Z. netCDF file created at 2025-06-24T09:53:32Z by the European HFR Node. id=GL_TV_HF_HFR-Ibiza-Total_20250624 infoUrl=https://www.hfrnode.eu/ institution=SOCIB - Balearic Islands Coastal Observing and forecasting System institution_edmo_code=3410 institution_references=https://www.socib.es/ https://www.socib.es keywords_vocabulary=GCMD Science Keywords last_calibration_date=FORM: 2020-03-03T00:00:00Z; GALF: 2017-01-26T00:00:00Z manufacturer=FORM: CODAR SeaSonde, GALF: CODAR SeaSonde naming_authority=Copernicus Marine In Situ netcdf_version=netCDF-4 classic model network=HFR_Ibiza Northernmost_Northing=39.1067 platform_code=HFR-Ibiza-Total platform_name=HFR-Ibiza-Total processing_level=3B project=Jerico-Next; INCREASE; CMEMS-INSTAC phase2 references=http://marine.copernicus.eu http://www.marineinsitu.eu http://www.marineinsitu.eu/wp-content/uploads/2018/02/HFR_Data_Model_Reference_Card_v1.pdf sensor_model=FORM: CODAR SeaSonde, GALF: CODAR SeaSonde site_code=HFR-Ibiza source=coastal structure source_platform_category_code=17 sourceUrl=(local files) Southernmost_Northing=38.32299 spatial_resolution=3.0 time_coverage_duration=P0DT10H0M0S time_coverage_end=2025-06-24T09:00:00Z time_coverage_resolution=PT1H time_coverage_start=2019-02-01T00:00:00Z update_interval=void Westernmost_Easting=0.5038552

  10. SARDINIA - MALLORCA REPEATED TRANSECT (SMART)

    • apps.socib.es
    Updated Nov 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albert Miralles; Manuel Rubio; Nikolaos D. Zarokanellos; Mireno Borghini (2021). SARDINIA - MALLORCA REPEATED TRANSECT (SMART) [Dataset]. http://doi.org/10.25704/zwmh-ap87
    Explore at:
    Dataset updated
    Nov 1, 2021
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Albert Miralles; Manuel Rubio; Nikolaos D. Zarokanellos; Mireno Borghini
    Area covered
    Dataset funded by
    Ministerio de ciencia, innovación y universidades (http://www.ciencia.gob.es/)
    CNR-ISMAR
    Govern de les Illes Balears (http://www.caib.es/)
    Description

    SMART missions are part of the long-term quasi endurance program between Menorca- Sardinia to monitor medium-to-long-term variability of surface and intermediate water masses. The SMART program aims to be sustained over the years to understand the transitional layer between intermediate and deep water, which is subject to the effects of the WMT and where the thermohaline staircase

  11. Reconstruction of Mediterranean coastal sea level at different timescales...

    • doi.pangaea.de
    • portaldelainvestigacion.uma.es
    rar
    Updated Jun 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge Ramos Alcántara; Damià Gomis; Gabriel Jordà (2022). Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records [Dataset]. http://doi.org/10.1594/PANGAEA.945345
    Explore at:
    rarAvailable download formats
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    PANGAEA
    Authors
    Jorge Ramos Alcántara; Damià Gomis; Gabriel Jordà
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mediterranean Sea
    Description

    A coastal sea level reconstruction based on tide gauge observations is developed and applied to the western basin of the Mediterranean sea, including sea level anomaly (SLA) and interpolation error along the entire coastline. The reconstructions are carried out in four frequency bands: periods longer than 10 years, periods between 1 and 10 years, periods between 1 month and 1 year, and periods between 1day and 1month. Total sea level at monthly and daily resolution, obtained by merging the different frequency bands, is also provided. The reconstructions are based on an optimal interpolation method in which the correlation between tide gauge data and all coastal points has been determined from the outputs of the numerical model managed by the Balearic Islands Coastal Observing and Forecasting System (SOCIB, https://www.socib.es). The reconstructions for frequencies lower than 1 month use monthly observations from the Permanent Service for Mean Sea Level (PSMSL, https://www.psmsl.org/) database and cover the period from 1884 to 2019. For the reconstruction of higher frequencies, hourly observations from the Global Extreme Sea Level Analysis (GESLA–2, https://www.gesla.org/) dataset are used, and cover from 1980 to 2015.

  12. e

    Kampaania: SOCIB 1212

    • data.europa.eu
    Updated Dec 18, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Kampaania: SOCIB 1212 [Dataset]. https://data.europa.eu/data/datasets/urn-sdn-csr-local-29so201212190?locale=et
    Explore at:
    Dataset updated
    Dec 18, 2012
    Description

    Korduv hooajaline hüdrograafiline uuring Baleaari meres, jälgides Ibiza ja Mallorca kanalit.

  13. s

    Data from: Cala Millor Coastal Station Endurance Line; Morphodynamics data...

    • apps.socib.es
    Updated Jan 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angels Fernandez-Mora; Francisco Fabián Criado-Sudau; Lluís Gómez-Pujol; Joaquín Tintoré; Alejandro Orfila (2023). Cala Millor Coastal Station Endurance Line; Morphodynamics data of a microtidal semiembayed beach, Cala Millor [Dataset]. http://doi.org/10.25704/ahjv-da25
    Explore at:
    Dataset updated
    Jan 20, 2023
    Dataset provided by
    datacite
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Angels Fernandez-Mora; Francisco Fabián Criado-Sudau; Lluís Gómez-Pujol; Joaquín Tintoré; Alejandro Orfila
    Area covered
    Cala Millor
    Dataset funded by
    Govern de les Illes Balears
    Ministerio de Ciencia e Innovación
    Description

    Systematic and sustained high quality measurements of nearshore waves and beach morphology are crucial to unravel the effects of global warming on sandy coasts and thus be able to assess the validity of sediment transport numerical models. Such measurements are also key to understanding the morphodynamic processes that determine how the beach evolves. In 2011 a comprehensive beach monitoring program, the first in the Mediterranean Sea, started at Cala Millor Beach on the island of Mallorca (Spain). The aim was to provide long-term datasets of near-shore morphodynamics in a carbonate sandy micro-tidal and semi-embayed beach fronted by a Posidonia oceanica seagrass meadow. The dataset includes topobathymetries, shoreline positions obtained from video cameras, meteorological parameters from a weather station, currents, as well as waves and sea level from ADCP measurements and sediment size. This free and unrestricted archived dataset can be used to support the modelling of erosion-deposition patterns, calibrate beach evolution models, and as a result to propose adaptation and mitigation actions under different global change scenarios.

  14. i

    Form SOCIB radar

    • sextant.ifremer.fr
    www:link
    Updated Jun 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SOCIB (2018). Form SOCIB radar [Dataset]. https://sextant.ifremer.fr/record/1441e554-f9c5-4687-8e6d-c623915ce830/
    Explore at:
    www:linkAvailable download formats
    Dataset updated
    Jun 19, 2018
    Dataset provided by
    SOCIB
    Area covered
    Description

    HF Radar System

  15. Z

    BWILD: Beach seagrass Wrack Identification Labelled Dataset

    • data.niaid.nih.gov
    • portalinvestigacio.uib.cat
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pérez-Cañellas, Jose David (2025). BWILD: Beach seagrass Wrack Identification Labelled Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_12698763
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Sánchez-García, Elena
    Oliver-Sansó, Josep
    Balearic Islands Coastal Observing and Forecasting System
    Gómez-Pujol, Lluís
    Criado-Sudau, Francisco
    Pérez-Cañellas, Jose David
    Fernández-Mora, Àngels
    Soriano-González, Jesús
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Training dataset

    BWILD is a dataset tailored to train Artificial Intelligence applications to automate beach seagrass wrack detection in RGB images. It includes oblique RGB images captured by SIRENA beach video-monitoring systems, along with corresponding annotations, auxiliary data and a README file. BWILD encompasses data from two microtidal sandy beaches in the Balearic Islands, Spain. The dataset consists of images with varying fields of view (9 cameras), beach wrack abundance, degrees of occupation, and diverse meteoceanic and lighting conditions. The annotations categorise image pixels into five classes: i) Landwards, ii) Seawards, iii) Diffuse wrack, iv) Intermediate wrack, and v) Dense wrack.

    Technical details

    The BWILD version 1.1.0 is packaged in a compressed file (BWILD_v1.1.0.zip). A total of 3286 RGB images are shared in PNG format, corresponding annotations and masks in various formats (PNG, XML, JSON,TXT), and the README file in PDF format.

    Data preprocessing

    The BWILD dataset utilizes snapshot images from two SIRENA beach video-monitoring systems. To facilitate annotation while maintaining a diverse range of scenarios, the original 1280x960 pixel images were cropped to smaller regions, with a uniform resolution of 640x480 pixels. A subset of images was carefully curated to minimize annotation workload while ensuring representation of various time periods, distances to camera, and environmental conditions. Image selection involved filtering for quality, clustering for diversity, and prioritizing scenes containing beach seagrass wracks. Further details are available in the README file.

    Data splitting

    Data splitting requirements may vary depending on the chosen Artificial Intelligence approach (e.g., splitting by entire images or by image patches). Researchers should use a consistent method and document the approach and splits used in publications, enabling reproducible results and facilitating comparisons between studies.

    Classes, labels and annotations

    The BWILD dataset has been labelled manually using the 'Computer Vision Annotation Tool' (CVAT), categorising pixels into five labels of interest using polygon annotations.

      Label
                                         Description
    

    landwards Pixels that are towards the landside with respect to the shoreline

    seawards Pixels that are towards the seaside with respect to the shoreline

    diffuse wrack Pixels that potentially resembled beach wracks based on colour and shape, yet the annotator could not confirm this with certainty, were denoted as ‘diffuse wrack’

    Intermediate wrack Pixels with low-density beach wracks or mixed beach wracks and sand surfaces

    Dense wrack Pixels with high-density beach wracks

    Annotations were exported from CVAT in four different formats: (i) CVAT for images (XML); (ii) Segmentation Mask 1.0 (PNG); (iii) COCO (JSON); (iv) Ultralytics YOLO Segmentation 1.0 (TXT). These diverse annotation formats can be used for various applications including object detection and segmentation, and simplify the interaction with the dataset, making it more user-friendly. Further details are available in the README file.

    Parameters

    RGB values or any transformation in the colour space can be used as parameters.

    Data sources

    A SIRENA system consists of a set of RGB cameras mounted at the top of buildings on the beachfront. These cameras take oblique pictures of the beach, with overlapping sights, at 7.5 FPS during the first 10 minutes of each hour in daylight hours. From these pictures, different products are generated, including snapshots, which correspond to the frame of the video at the 5th minute. In the Balearic Islands, SIRENA stations are managed by the Balearic Islands Coastal Observing and Forecasting System (SOCIB), and are mounted at the top of hotels located in front of the coastline. The present dataset includes snapshots from the SIRENA systems operating since 2011 at Cala Millor (5 cameras) and Son Bou (4 cameras) beaches, located in Mallorca and Menorca islands (Balearic Islands, Spain), respectively. All latest and historical SIRENA images are available at the Beamon app viewer (https://apps.socib.es/beamon).

    Data quality

    All images included in BWILD have been supervised by the authors of the dataset. However, variable presence of beach segrass wracks across different beach segments and seasons impose a variable distribution of images across different SIRENA stations and cameras. Users of BWILD dataset must be aware of this variance. Further details are available in the README file.

    Image resolution

    The resolution of the images in BWILD is of 640x480 pixels.

    Spatial coverage

    The BWILD version 1.1.0 contains data from two SIRENA beach video-monitoring stations, encompassing two microtidal sandy beaches in the Balearic Islands, Spain. These are: Cala Millor (clm) and Son Bou (snb).

    SIRENA station Longitude Latitude

    clm 3.383 39.596

    snb 4.077 39.898

    Contact information

    For further technical inquiries or additional information about the annotated dataset, please contact jsoriano@socib.es.

  16. Z

    Observational characterization of atmospheric disturbances generating...

    • data.niaid.nih.gov
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Villalonga, Joan (2024). Observational characterization of atmospheric disturbances generating meteotsunamis in the Balearic Islands: data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10478601
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset authored and provided by
    Villalonga, Joan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Balearic Islands
    Description

    This dataset contains all data used in the article:

    Observational characterization of atmospheric disturbances generating meteotsunamis in the Balearic Islands

    Joan Villalonga*(1,2), Sebastià Monserrat (1), Damià Gomis (1,3), Gabriel Jordà*(2)

    (1) Departament de Física (UIB), Palma, Spain.

    (2) Centre Oceanogràfic de Balears, CN-Instituto Español de Oceanografía (IEO-CSIC), Palma, Spain.

    (3) Institut Mediterrani d’Estudis Avançats (UIB-CSIC), Esporles, Spain.

    Corresponding email: joan.villalonga@uib.cat

    There are 7 data files:

    Atm_pres_all: containing the atmospheric pressure time series measured in the different meteorological stations used in the work. Each station contain its name and position in coordinates. All the time series have a temporal resolution of 1 min. The data have been obtained from BalearsMeteo (http://balearsmeteo.com/) and from SOCIB (https://www.socib.es/).

    ciutadella_SL_AtmPres: containing the sea level and atmospheric pressure records in Ciutadella from 2018 to 2021. All the time series have a temporal resolution of 1 min. The data have been provided by PortIB (https://www.portsib.es/ca/paginas/inici).

    ciutadella_SL_long: containing the sea level records in Ciutadella from 2014 to 2021. All the time series have a temporal resolution of 1 min. The data have been provided by PortIB (https://www.portsib.es/ca/paginas/inici).

    ciutadella_spectral_data: containing the sea level and atmospheric pressure power wavelet spectra in Ciutadella from 2018 to 2021. Computed from the data in ciutadella_SL_AtmPres.

    corr_rissagues_1min_allfreq_12h: containing the maximum lagged correlation matrices between the atmospheric pressure time series measured at the 12h surrounding each meteotsunami event in 2021. They have been computed from the data in Atm_pres_all.

    sepic_index_vars: containing the five ERA5 1-hour time series of the variables used to compute the meteotsunami index as described in Sepic, et al,. 2016.

    wind_ciutadella: containing the time series of the wind speed and direction provided by ERA5 reanalysis over Ciutadella during the period of study.

    For more details, please consult the manuscript of the article

  17. E

    OceanGliders GDAC trajectories

    • erddap.ifremer.fr
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). OceanGliders GDAC trajectories [Dataset]. https://erddap.ifremer.fr/erddap/info/OceanGlidersGDACTrajectories/index.html
    Explore at:
    Dataset updated
    Oct 24, 2024
    Time period covered
    Jan 1, 1970 - Jun 30, 2025
    Area covered
    Variables measured
    CDOM, CHLA, CNDC, JULD, PRES, PSAL, TEMP, time, BBP700, CDOM_QC, and 36 more
    Description

    OceanGliders GDAC trajectories abstract=The general objective of the EBAMAR-PortoC program is to promote, jointly and coordinated with the activities carried out by other autonomous communities, the current research and technological development strategy in marine sciences of the Balearic Islands so that the new challenges in the ocean observation and, in particular, the effects of climate change in the Mediterranean Sea. Through a detailed understanding of how carbon cycling processes are varying in neritic and oceanic waters, and of the pathways that link production in surface waters with the export of organic matter to deep areas of the ocean, we seek to answer to scientific questions about ocean warming, and more specifically, how Mediterranean marine ecosystems and biogeochemical cycles respond to environmental changes or what the dynamics of the carbon cycle and marine ecosystems will be like in the future.. acknowledgement=Ministerio de Economía y Competitividad (http://www.idi.mineco.gob.es/). Govern de les Illes Balears (http://www.caib.es/). author_email=glider@socib.es cdm_data_type=Trajectory cdm_trajectory_variables=JULD, time citation=Ministerio de Economía y Competitividad (http://www.idi.mineco.gob.es/). Govern de les Illes Balears (http://www.caib.es/). comment=Data regularized, corrected and/or derived from raw glider data. Conventions=CF-1.6 EGO-1.2, COARDS, ACDD-1.3 creator=SOCIB Glider facility data_center=SOCIB Data Center data_center_email=data.centre@socib.es data_mode=R data_type=EGO glider time-series data distribution_statement=see citation Easternmost_Easting=696970.15 featureType=Trajectory format_version=1.2 geospatial_lat_max=696970.15 geospatial_lat_min=-94.01332363329217 geospatial_lat_units=degrees_north geospatial_lon_max=696970.15 geospatial_lon_min=-179.9998312997277 geospatial_lon_units=degrees_east ices_platform_code=undefined infoUrl=http://www.ego-network.org/ institution=IFREMER instrument=SCB-SLDEEP008 instrument_manufacturer=Teledyne instrument_model=Slocum G3 Deep keywords_vocabulary=GCMD Science Keywords naming_authority=EGO Northernmost_Northing=696970.15 positioning_system=GPS and dead reckoning processing_level=L1 processed data with corrections and derivations project=SOCIB Operational publisher=SOCIB qc_manual=none source=Glider observation source_files=sdeep08-2025-131-2-10-sbd(01450010) sdeep08-2025-131-2-102-sbd(01450102) sdeep08-2025-131-2-12-sbd(01450012) sdeep08-2025-131-2-14-sbd(01450014) sdeep08-2025-131-2-16-sbd(01450016) sdeep08-2025-131-2-19-sbd(01450019) sdeep08-2025-131-2-2-sbd(01450002) sdeep08-2025-131-2-21-sbd(01450021) sdeep08-2025-131-2-23-sbd(01450023) sdeep08-2025-131-2-25-sbd(01450025) sdeep08-2025-131-2-27-sbd(01450027) sdeep08-2025-131-2-31-sbd(01450031) sdeep08-2025-131-2-33-sbd(01450033) sdeep08-2025-131-2-35-sbd(01450035) sdeep08-2025-131-2-37-sbd(01450037) sdeep08-2025-131-2-39-sbd(01450039) sdeep08-2025-131-2-4-sbd(01450004) sdeep08-2025-131-2-43-sbd(01450043) sdeep08-2025-131-2-47-sbd(01450047) sdeep08-2025-131-2-51-sbd(01450051) sdeep08-2025-131-2-53-sbd(01450053) sdeep08-2025-131-2-59-sbd(01450059) sdeep08-2025-131-2-6-sbd(01450006) sdeep08-2025-131-2-61-sbd(01450061) sdeep08-2025-131-2-63-sbd(01450063) sdeep08-2025-131-2-65-sbd(01450065) sdeep08-2025-131-2-67-sbd(01450067) sdeep08-2025-131-2-69-sbd(01450069) sdeep08-2025-131-2-71-sbd(01450071) sdeep08-2025-131-2-75-sbd(01450075) sdeep08-2025-131-2-77-sbd(01450077) sdeep08-2025-131-2-79-sbd(01450079) sdeep08-2025-131-2-8-sbd(01450008) sdeep08-2025-131-2-82-sbd(01450082) sdeep08-2025-131-2-84-sbd(01450084) sdeep08-2025-131-2-86-sbd(01450086) sdeep08-2025-131-2-88-sbd(01450088) sdeep08-2025-131-2-92-sbd(01450092) sdeep08-2025-131-2-94-sbd(01450094) sdeep08-2025-131-2-96-sbd(01450096) sdeep08-2025-131-2-98-sbd(01450098) sdeep08-2025-131-2-0-tbd(01450000) sdeep08-2025-131-2-10-tbd(01450010) sdeep08-2025-131-2-100-tbd(01450100) sdeep08-2025-131-2-102-tbd(01450102) sdeep08-2025-131-2-12-tbd(01450012) sdeep08-2025-131-2-14-tbd(01450014) sdeep08-2025-131-2-16-tbd(01450016) sdeep08-2025-131-2-19-tbd(01450019) sdeep08-2025-131-2-2-tbd(01450002) sdeep08-2025-131-2-21-tbd(01450021) sdeep08-2025-131-2-23-tbd(01450023) sdeep08-2025-131-2-25-tbd(01450025) sdeep08-2025-131-2-27-tbd(01450027) sdeep08-2025-131-2-29-tbd(01450029) sdeep08-2025-131-2-31-tbd(01450031) sdeep08-2025-131-2-33-tbd(01450033) sdeep08-2025-131-2-35-tbd(01450035) sdeep08-2025-131-2-37-tbd(01450037) sdeep08-2025-131-2-39-tbd(01450039) sdeep08-2025-131-2-4-tbd(01450004) sdeep08-2025-131-2-41-tbd(01450041) sdeep08-2025-131-2-43-tbd(01450043) sdeep08-2025-131-2-45-tbd(01450045) sdeep08-2025-131-2-47-tbd(01450047) sdeep08-2025-131-2-49-tbd(01450049) sdeep08-2025-131-2-51-tbd(01450051) sdeep08-2025-131-2-53-tbd(01450053) sdeep08-2025-131-2-55-tbd(01450055) sdeep08-2025-131-2-57-tbd(01450057) sdeep08-2025-131-2-59-tbd(01450059) sdeep08-2025-131-2-6-tbd(01450006) sdeep08-2025-131-2-61-tbd(01450061) sdeep08-2025-131-2-63-tbd(01450063) sdeep08-2025-131-2-65-tbd(01450065) sdeep08-2025-131-2-67-tbd(01450067) sdeep08-2025-131-2-69-tbd(01450069) sdeep08-2025-131-2-71-tbd(01450071) sdeep08-2025-131-2-73-tbd(01450073) sdeep08-2025-131-2-75-tbd(01450075) sdeep08-2025-131-2-77-tbd(01450077) sdeep08-2025-131-2-79-tbd(01450079) sdeep08-2025-131-2-8-tbd(01450008) sdeep08-2025-131-2-82-tbd(01450082) sdeep08-2025-131-2-84-tbd(01450084) sdeep08-2025-131-2-86-tbd(01450086) sdeep08-2025-131-2-88-tbd(01450088) sdeep08-2025-131-2-92-tbd(01450092) sdeep08-2025-131-2-94-tbd(01450094) sdeep08-2025-131-2-96-tbd(01450096) sdeep08-2025-131-2-98-tbd(01450098)

    sourceUrl=(local files) Southernmost_Northing=-94.01332363329217 standard_name_vocabulary=CF Standard Name Table v29 time_coverage_end=2025-06-30T22:04:21Z time_coverage_start=1970-01-01T00:00:00Z transmission_system=IRIDIUM update_interval=daily Westernmost_Easting=-179.9998312997277

  18. Data from: SOCIB INT RadarAPM Jul2016. Lagrangian Experiment Ibiza Channel

    • apps.socib.es
    Updated 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emma Reyes; Baptiste Mourre; Nikolaus Wirth; Pau Balaguer; Benjamin Casas; Charles Troupin; Cristian Muñoz; Alejandro Orfila; Joaquin Tintoré (2020). SOCIB INT RadarAPM Jul2016. Lagrangian Experiment Ibiza Channel [Dataset]. http://doi.org/10.25704/bb7m-zv61
    Explore at:
    Dataset updated
    2020
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Emma Reyes; Baptiste Mourre; Nikolaus Wirth; Pau Balaguer; Benjamin Casas; Charles Troupin; Cristian Muñoz; Alejandro Orfila; Joaquin Tintoré
    Description

    Lagrangian experiment in the Ibiza channel during Summer 2016, aiming to validate HF-Radar surface currents (new Antenna Pattern Measurement)

  19. s

    HF Radar Ibiza data

    • apps.socib.es
    Updated 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joaquín Tintoré; Arancha Lana; Julien Marmain; Vicente Fernández; Benjamín Casas; Emma Reyes (2020). HF Radar Ibiza data [Dataset]. http://doi.org/10.25704/17gs-2b59
    Explore at:
    Dataset updated
    2020
    Dataset provided by
    DataCite
    Balearic Islands Coastal Observing and Forecasting System, SOCIB
    Authors
    Joaquín Tintoré; Arancha Lana; Julien Marmain; Vicente Fernández; Benjamín Casas; Emma Reyes
    Area covered
    Dataset funded by
    MedClic project (449 LCF/PR/PR14/11090002) from La Caixa Foundation
    Ministerio de ciencia, innovación y universidades (http://www.ciencia.gob.es/) Govern de les Illes Balears (http://www.caib.es/)
    EU Horizon 2020 Framework Programme
    Description

    Continuous hourly coastal ocean surface current maps in the Ibiza Channel measured by High-Frequency Radars (HFR). HFR is nowadays the unique land-based remote sensing technology providing continuous maps of near-real surface currents (0.9 m) over wide areas (out of about 85 km from near shore) with high-spatial (3 km) and temporal resolution (hourly). The operation principle of HFRs for measuring coastal ocean surface currents is based on the Bragg resonant backscatter phenomenon: the HFR CODAR SeaSonde combined-antenna transmits electromagnetic waves with frequency of 13.5MHz (associated to wavelength of 22.2 m) and the ocean waves of half the transmitted electromagnetic wavelength (11.1 m) scatter the pulse back to the antenna. Two or more HFR sites are needed for computing the map of total surface current vectors in the overlapping coverage area."

  20. i

    IH CantabriaM. González

    • sextant.ifremer.fr
    • pigma.org
    doi, www:link
    Updated Dec 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MEDSEA_CH4_Product_7 / Sediment Mass Balance at the Coast from Experts Survey and Scientific Literature Review (2016). IH CantabriaM. González [Dataset]. https://sextant.ifremer.fr/geonetwork/srv/api/records/998d0894-fee4-41ae-905e-9dac7fe6114e
    Explore at:
    doi, www:linkAvailable download formats
    Dataset updated
    Dec 1, 2016
    Dataset provided by
    MEDSEA_CH4_Product_7 / Sediment Mass Balance at the Coast from Experts Survey and Scientific Literature Review
    SOCIB, Balearic Islands Coastal Observing and Forecasting System
    SOCIB
    EMODnet Medsea Checkpoint
    Time period covered
    Jan 1, 1913 - Dec 31, 2012
    Area covered
    Description

    Description of attributes for sediment mass budget at the coast for the last 10, 50 and 100 years for the Mediterranean basin and for each NUTS3 region along the coast.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Joaquín Tintoré (2022). Buoy BahiaDePalma data [Dataset]. http://doi.org/10.25704/s6jb-ck61
Organization logo

Buoy BahiaDePalma data

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 19, 2022
Dataset provided by
DataCitehttps://www.datacite.org/
Balearic Islands Coastal Observing and Forecasting System, SOCIB
Authors
Joaquín Tintoré
Area covered
Dataset funded by
Govern de les Illes Balears
Ministerio de Ciencia, Innovación y Universidades
Description

Data produced in the platform Buoy BahiaDePalma. It's compound by: Conductivity and Temperature Recorder, Current profiler, Currentmeter, Multiparameter probe, Oceanographic Buoy, Status, Waves recorder, Weather Station data

Search
Clear search
Close search
Google apps
Main menu