100+ datasets found
  1. g

    Website Traffic Dataset

    • gts.ai
    json
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

  2. Traffic Analysis Dataset

    • kaggle.com
    zip
    Updated Jan 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KALLA GNANACHANDU (2025). Traffic Analysis Dataset [Dataset]. https://www.kaggle.com/datasets/kallagnanachandu/traffic-analysis-dataset
    Explore at:
    zip(74664 bytes)Available download formats
    Dataset updated
    Jan 17, 2025
    Authors
    KALLA GNANACHANDU
    Description

    This dataset is a structured collection of traffic data extracted from video footage, designed to support machine learning and data analysis projects. It includes attributes such as vehicle counts, average speed, time taken to cross frames, and vehicle types. The dataset is well-suited for traffic prediction, clustering, and classification tasks.

    Key Features: Frame-wise traffic data, including counts of cars, trucks, bikes, and buses. Calculated features such as average speed, crossing time, and total vehicles. Supports tasks like PCA, regression, clustering, and classification. Extracted using YOLOv8 for object detection and tracking. Applications: Predict traffic density for smart traffic management systems. Analyze traffic patterns and vehicle distributions. Implement clustering and PCA to identify meaningful patterns in traffic data. Train machine learning models for real-time traffic monitoring. This dataset provides a foundational resource for researchers and developers working on traffic-related machine learning and computer vision projects.

  3. FutureFlow: Navigating Tomorrow's Urban Traffic

    • kaggle.com
    zip
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AnthonyTherrien (2024). FutureFlow: Navigating Tomorrow's Urban Traffic [Dataset]. https://www.kaggle.com/datasets/anthonytherrien/futureflow-navigating-tomorrows-urban-traffic
    Explore at:
    zip(21924558 bytes)Available download formats
    Dataset updated
    Jan 25, 2024
    Authors
    AnthonyTherrien
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset provides a comprehensive look at traffic data in a futuristic urban setting. It includes over 1.2 million records, each representing a unique snapshot of various factors influencing traffic conditions in six fictional cities.

    Features

    • City: The name of the city (e.g., MetropolisX, SolarisVille).
    • Vehicle Type: Type of vehicle in use (e.g., Car, Flying Car).
    • Weather Conditions: Current weather conditions at the time of data capture (e.g., Clear, Rainy).
    • Economic Conditions: Economic state of the city at the time of the record (e.g., Booming, Recession).
    • Day of Week: The day of the week.
    • Hour of Day: The hour of the day when the data was recorded.
    • Speed: Recorded speed of the vehicle.
    • Energy Consumption: An estimate of energy consumption based on vehicle type and speed.
    • Is Peak Hour: Indicator of whether the record was during peak traffic hours.
    • Random Event Occurred: Indicator of whether a random event (like accidents or road closures) occurred.
    • Traffic Density: The density of traffic at the time of recording.

    File Format

    The dataset is provided in a CSV format, suitable for analysis in various data processing tools and programming languages.

    Potential Uses

    This dataset can be used for a range of studies and analyses, including but not limited to:

    • Understanding traffic patterns in futuristic urban environments.
    • Analyzing the impact of various factors like weather, economic conditions, and vehicle types on traffic flow and energy consumption.
    • Developing and testing traffic management algorithms, especially for autonomous vehicles and smart city solutions.

    Note: This is a simulated dataset created for analytical and educational purposes.

  4. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  5. m

    Composed Encrypted Malicious Traffic Dataset for machine learning based...

    • data.mendeley.com
    Updated Oct 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zihao Wang (2021). Composed Encrypted Malicious Traffic Dataset for machine learning based encrypted malicious traffic analysis. [Dataset]. http://doi.org/10.17632/ztyk4h3v6s.2
    Explore at:
    Dataset updated
    Oct 12, 2021
    Authors
    Zihao Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a traffic dataset which contains balance size of encrypted malicious and legitimate traffic for encrypted malicious traffic detection. The dataset is a secondary csv feature data which is composed of five public traffic datasets. Our dataset is composed based on three criteria: The first criterion is to combine widely considered public datasets which contain both encrypted malicious and legitimate traffic in existing works, such as the Malwares Capture Facility Project dataset and the CICIDS-2017 dataset. The second criterion is to ensure the data balance, i.e., balance of malicious and legitimate network traffic and similar size of network traffic contributed by each individual dataset. Thus, approximate proportions of malicious and legitimate traffic from each selected public dataset are extracted by using random sampling. We also ensured that there will be no traffic size from one selected public dataset that is much larger than other selected public datasets. The third criterion is that our dataset includes both conventional devices' and IoT devices' encrypted malicious and legitimate traffic, as these devices are increasingly being deployed and are working in the same environments such as offices, homes, and other smart city settings.

    Based on the criteria, 5 public datasets are selected. After data pre-processing, details of each selected public dataset and the final composed dataset are shown in “Dataset Statistic Analysis Document”. The document summarized the malicious and legitimate traffic size we selected from each selected public dataset, proportions of selected traffic size from each selected public dataset with respect to the total traffic size of the composed dataset (% w.r.t the composed dataset), proportions of selected encrypted traffic size from each selected public dataset (% of selected public dataset), and total traffic size of the composed dataset. From the table, we are able to observe that each public dataset equally contributes to approximately 20% of the composed dataset, except for CICDS-2012 (due to its limited number of encrypted malicious traffic). This achieves a balance across individual datasets and reduces bias towards traffic belonging to any dataset during learning. We can also observe that the size of malicious and legitimate traffic are almost the same, thus achieving class balance. The datasets now made available were prepared aiming at encrypted malicious traffic detection. Since the dataset is used for machine learning model training, a sample of train and test sets are also provided. The train and test datasets are separated based on 1:4 and stratification is applied during data split. Such datasets can be used directly for machine or deep learning model training based on selected features.

  6. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moran, Madeline; Honig, Joshua; Ferrell, Nathan; Soni, Shreena; Homan, Sophia; Chan-Tin, Eric (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Loyola University Chicago
    Authors
    Moran, Madeline; Honig, Joshua; Ferrell, Nathan; Soni, Shreena; Homan, Sophia; Chan-Tin, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  7. d

    Chicago Traffic Tracker - Congestion Estimates by Segments

    • catalog.data.gov
    • data.cityofchicago.org
    • +4more
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-congestion-estimates-by-segments
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  8. e

    similarweb.com Traffic Analytics Data

    • analytics.explodingtopics.com
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). similarweb.com Traffic Analytics Data [Dataset]. https://analytics.explodingtopics.com/website/similarweb.com
    Explore at:
    Dataset updated
    Oct 1, 2025
    Variables measured
    Global Rank, Monthly Visits, Authority Score, US Country Rank, Online Services Category Rank
    Description

    Traffic analytics, rankings, and competitive metrics for similarweb.com as of October 2025

  9. R

    Traffic Dataset

    • universe.roboflow.com
    zip
    Updated Oct 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Traffic (2021). Traffic Dataset [Dataset]. https://universe.roboflow.com/traffic/traffic-dataset-z21ak/dataset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 4, 2021
    Dataset authored and provided by
    Traffic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Vehicle Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Traffic Flow Analysis: The dataset can be used in machine learning models to analyze traffic flow in cities. It can identify the type of vehicles on the city roads at different times of the day, helping in planning and traffic management.

    2. Vehicle Class Based Toll Collection: Toll booths can use this model to automatically classify and charge vehicles based on their type, enabling a more efficient and automated system.

    3. Parking Management System: Parking lot owners can use this model to easily classify vehicles as they enter for better space management. Knowing the vehicle type can help assign it to the most suitable parking spot.

    4. Traffic Rule Enforcement: The dataset can be used to create a computer vision model to automatically detect any traffic violations like wrong lane driving by different vehicle types, and notify law enforcement agencies.

    5. Smart Ambulance Tracking: The system can help in identifying and tracking ambulances and other emergency vehicles, enabling traffic management systems to provide priority routing during emergencies.

  10. s

    Traffic Flow Data Jan to June 2023 SDCC

    • data.smartdublin.ie
    • hub.arcgis.com
    Updated Jul 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Traffic Flow Data Jan to June 2023 SDCC [Dataset]. https://data.smartdublin.ie/dataset/traffic-flow-data-jan-to-june-2023-sdcc1
    Explore at:
    Dataset updated
    Jul 1, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.

  11. VDOT Bidirectional Traffic Volume 2023

    • virginiaroads.org
    • data.virginia.gov
    • +1more
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Department of Transportation (2025). VDOT Bidirectional Traffic Volume 2023 [Dataset]. https://www.virginiaroads.org/datasets/vdot-bidirectional-traffic-volume-2023
    Explore at:
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Virginia Department Of Transportation
    Authors
    Virginia Department of Transportation
    Area covered
    Description

    This layer consists of Average Daily Traffic (ADT) volumes with Vehicle Classification Data for most recent years, on Interstate, Arterial and Primary Routes. It also includes a list of each Interstate and Primary highway segment with the estimated Annual Average Week Day Traffic (AAWDT) for that segment. It includes data from 1986 to 2023. Please note that traffic volume data here are bidirectional volume. The latest directional and bidirectional traffic volume data are also available in TMPD’s Pathways for Planning (P4P), https://vdotp4p.com.Data Updated: Spring 2024 ADT Quality Codes: 1 A Average of Complete Continuous Data 2 B Average of Selected Continuous Count Data 6 F Factored Short Term Traffic Count Data 7 G Factored Short Term Traffic Count Data with Growth Element 8 H Historical Estimate 13 M Manual Uncounted Estimate 14 N AADT of Similar Neighboring Traffic Link 15 O Provided By External Source 18 R Unfactored 24 Hour Traffic Count 20 T ITE Trip Generation Estimate 24 X Not Available Class Quality Codes: 1 A Average of Complete Continuous Data 2 B Average of Selected Continuous Count Data 3 C Short Term Classified Traffic Count 4 D Corrected Short Term Classified Traffic Count 6 F Factored Short Term Traffic Count Data 7 G Corrected Factored Short Term Traffic Count Data 8 H Historical Estimate 13 M Mass Collective Average 14 N Classification of Similar Neighboring Traffic Link 24 X Not Available Pop Up ConfigurationAverage Daily Traffic: {ADT}-----------------------------------------------------------Route Name: {ROUTE_COMMON_NAME}Route Type: {RTE_TYPE_CD}Begin Location: {START_LABEL}End Location: {END_LABEL}Average Annual Weekday Traffic: {AAWDT}View in attribute table for more details...

  12. s

    Citation Trends for "The pseudo-self-similar traffic model: application and...

    • shibatadb.com
    Updated Mar 15, 2004
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yubetsu (2004). Citation Trends for "The pseudo-self-similar traffic model: application and validation" [Dataset]. https://www.shibatadb.com/article/YEBz9o5e
    Explore at:
    Dataset updated
    Mar 15, 2004
    Dataset authored and provided by
    Yubetsu
    License

    https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt

    Time period covered
    2005 - 2016
    Variables measured
    New Citations per Year
    Description

    Yearly citation counts for the publication titled "The pseudo-self-similar traffic model: application and validation".

  13. d

    Chicago Traffic Tracker - Historical Congestion Estimates by Segment -...

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Oct 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Segment - 2024-Current [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-historical-congestion-estimates-by-segment-2024-current
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for over 1,000 traffic segments, starting 6/11/2024 (except for a single time slice on 3/8/2024). Older records are in https://data.cityofchicago.org/d/sxs8-h27x. The most recent estimates for each segment are in https://data.cityofchicago.org/d/n4j6-wkkf. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  14. v

    Traffic Volume

    • opendata.victoria.ca
    Updated May 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Victoria (2021). Traffic Volume [Dataset]. https://opendata.victoria.ca/datasets/traffic-volume
    Explore at:
    Dataset updated
    May 6, 2021
    Dataset authored and provided by
    City of Victoria
    License

    https://opendata.victoria.ca/pages/open-data-licencehttps://opendata.victoria.ca/pages/open-data-licence

    Area covered
    Description

    Traffic Volume (24hr count). Data are updated as needed by the Transportation department (typically in the summer), and subsequently copied to VicMap and the Open Data Portal the following day.Traffic speed and volume data are collected at various locations around the city, from different locations each year, using a variety of technologies and manual counting. Counters are placed on streets and at intersections, typically for 24-hour periods. Targeted information is also collected during morning or afternoon peak period travel times and can also be done for several days at a time to capture variability on different days of the week. The City collects data year-round and in all types of weather (except for extreme events like snowstorms). The City also uses data from our agency partners like Victoria Police, the CRD or ICBC. Speed values recorded at each location represent the 85th percentile speed, which means 85% or less traffic travels at that speed. This is standard practice among municipalities to reduce anomalies due to excessively speedy or excessively slow drivers. Values recorded are based on the entire 24-hour period.The Traffic Volume dataset is linear. The lines can be symbolized using arrows and the "Direction" attribute. Where the direction value is "one", use an arrow symbol where the arrow is at the end of the line. Where the direction value is "both", use an arrow symbol where there are arrows at both ends of the line. Use the "Label" field to add labels. The label field indicates the traffic volume at each location, and the year the data was collected. So for example, “2108(05)” means 2108 vehicles were counted in the year 2005 at that location.Data are automatically copied to the Open Data Portal. The "Last Updated" date shown on our Open Data Portal refers to the last time the data schema was modified in the portal, or any changes were made to this description. We update our data through automated scripts which does not trigger the "last updated" date to change. Note: Attributes represent each field in a dataset, and some fields will contain information such as ID numbers. As a result some visualizations on the tabs on our Open Data page will not be relevant.

  15. m

    Traffic congestion Dataset

    • data.mendeley.com
    • narcis.nl
    Updated Nov 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bedada Bekele (2020). Traffic congestion Dataset [Dataset]. http://doi.org/10.17632/wtp4ssmwsd.1
    Explore at:
    Dataset updated
    Nov 2, 2020
    Authors
    Bedada Bekele
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The main aim of this dataset is to enable detection of traffic congestion from surveillance cameras using one-stage object detectors. The dataset contains congested and uncongested traffic scenes with their respective labels. This dataset is collected from different surveillance cameras video footage. To prepare the dataset frames are extracted from video sources and resized to a dimension of 500 x 500 with .jpg image format. To Annotate, the image LabelImg software has used. The format of the label is .txt with the same name as the image. The dataset is mainly prepared for YOLO Models but it can be converted to other models format.

  16. USA Traffic Counts

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    Updated Jun 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). USA Traffic Counts [Dataset]. https://hub.arcgis.com/items/70507a8779a2470b89c6a8c90394d68e
    Explore at:
    Dataset updated
    Jun 16, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This layer shows traffic counts in the United States in a multiscale map. Traffic counts are widely used for site selection by real estate firms and franchises. Traffic counts are also used by departments of transportation for highway funding. This map is best viewed at large scales where you can click on each point to access up to five different traffic counts over time. At medium to small scales, comparisons along major roads are possible. The Business Basemap has been added to provide context at medium and small scales. It shows the location of businesses in the United States and helps to understand where and why traffic counts are collected and used. The pop-up is configured to display the following information:The most recent traffic countThe street name where the count was collectedThey type of count that was taken. See the methodology document for definitions of count types such as AADT - Average Annual Daily Traffic. Traffic Counts seasonally adjusted to represent the average day of the year. AADT counts represent counts taken Sunday—Saturday.A graph displaying up to five traffic counts taken at the same location over time. Permitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  17. C

    traffic speed

    • data.cityofchicago.org
    csv, xlsx, xml
    Updated Dec 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). traffic speed [Dataset]. https://data.cityofchicago.org/Transportation/traffic-speed/5a25-jnzd
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    City of Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, go to: http://bit.ly/Q9AZAD.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic.

    Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  18. Website Traffic

    • kaggle.com
    zip
    Updated Aug 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AnthonyTherrien (2024). Website Traffic [Dataset]. https://www.kaggle.com/datasets/anthonytherrien/website-traffic/discussion
    Explore at:
    zip(65228 bytes)Available download formats
    Dataset updated
    Aug 5, 2024
    Authors
    AnthonyTherrien
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset Overview

    This dataset provides detailed information on website traffic, including page views, session duration, bounce rate, traffic source, time spent on page, previous visits, and conversion rate.

    Dataset Description

    • Page Views: The number of pages viewed during a session.
    • Session Duration: The total duration of the session in minutes.
    • Bounce Rate: The percentage of visitors who navigate away from the site after viewing only one page.
    • Traffic Source: The origin of the traffic (e.g., Organic, Social, Paid).
    • Time on Page: The amount of time spent on the specific page.
    • Previous Visits: The number of previous visits by the same visitor.
    • Conversion Rate: The percentage of visitors who completed a desired action (e.g., making a purchase).

    Data Summary

    • Total Records: 2000
    • Total Features: 7

    Key Features

    1. Page Views: This feature indicates the engagement level of the visitors by showing how many pages they visit during their session.
    2. Session Duration: This feature measures the length of time a visitor stays on the website, which can indicate the quality of the content.
    3. Bounce Rate: A critical metric for understanding user behavior. A high bounce rate may indicate that visitors are not finding what they are looking for.
    4. Traffic Source: Understanding where your traffic comes from can help in optimizing marketing strategies.
    5. Time on Page: This helps in analyzing which pages are retaining visitors' attention the most.
    6. Previous Visits: This can be used to analyze the loyalty of visitors and the effectiveness of retention strategies.
    7. Conversion Rate: The ultimate metric for measuring the effectiveness of the website in achieving its goals.

    Usage

    This dataset can be used for various analyses such as:

    • Identifying key drivers of engagement and conversion.
    • Analyzing the effectiveness of different traffic sources.
    • Understanding user behavior patterns and optimizing the website accordingly.
    • Improving marketing strategies based on traffic source performance.
    • Enhancing user experience by analyzing time spent on different pages.

    Acknowledgments

    This dataset was generated for educational purposes and is not from a real website. It serves as a tool for learning data analysis and machine learning techniques.

  19. A unified and validated traffic dataset for 20 U.S. cities

    • figshare.com
    zip
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaotong Xu; Zhenjie Zheng; Zijian Hu; Kairui Feng; Wei Ma (2024). A unified and validated traffic dataset for 20 U.S. cities [Dataset]. http://doi.org/10.6084/m9.figshare.24235696.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 31, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Xiaotong Xu; Zhenjie Zheng; Zijian Hu; Kairui Feng; Wei Ma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).

  20. VDOT Bidirectional Traffic Volume 2024

    • virginiaroads.org
    • data.virginia.gov
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Department of Transportation (2025). VDOT Bidirectional Traffic Volume 2024 [Dataset]. https://www.virginiaroads.org/datasets/VDOT::vdot-bidirectional-traffic-volume-2024
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    Virginia Department Of Transportation
    Authors
    Virginia Department of Transportation
    Area covered
    Description

    This layer consists of Average Daily Traffic (ADT) volumes with Vehicle Classification Data for most recent years, on Interstate, Arterial and Primary Routes. It also includes a list of each Interstate and Primary highway segment with the estimated Annual Average Week Day Traffic (AAWDT) for that segment. It includes data from 1986 through 2024. Please note that traffic volume data here are bidirectional volume. The latest directional and bidirectional traffic volume data are also available in TMPD’s Pathways for Planning (P4P), https://vdotp4p.com.Data Currency: Through December 30, 2024 ADT Quality Codes: 1 A Average of Complete Continuous Data 2 B Average of Selected Continuous Count Data 6 F Factored Short Term Traffic Count Data 7 G Factored Short Term Traffic Count Data with Growth Element 8 H Historical Estimate 13 M Manual Uncounted Estimate 14 N AADT of Similar Neighboring Traffic Link 15 O Provided By External Source 18 R Unfactored 24 Hour Traffic Count 20 T ITE Trip Generation Estimate 24 X Not Available Class Quality Codes: 1 A Average of Complete Continuous Data 2 B Average of Selected Continuous Count Data 3 C Short Term Classified Traffic Count 4 D Corrected Short Term Classified Traffic Count 6 F Factored Short Term Traffic Count Data 7 G Corrected Factored Short Term Traffic Count Data 8 H Historical Estimate 13 M Mass Collective Average 14 N Classification of Similar Neighboring Traffic Link 24 X Not Available Pop Up ConfigurationAverage Daily Traffic: {ADT}-----------------------------------------------------------Route Name: {ROUTE_COMMON_NAME}Route Type: {RTE_TYPE_CD}Begin Location: {START_LABEL}End Location: {END_LABEL}Average Annual Weekday Traffic: {AAWDT}View in attribute table for more details...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/

Website Traffic Dataset

Explore at:
jsonAvailable download formats
Dataset updated
Aug 23, 2024
Dataset provided by
GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
Authors
GTS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

Search
Clear search
Close search
Google apps
Main menu