Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Difference uses Google Analytics as the Baseline. Results based on Paired t-Test for Hypotheses Supported.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The market for competitor analysis tools is experiencing robust growth, driven by the increasing importance of competitive intelligence in today's dynamic business landscape. The surge in digital marketing and the need for businesses, both SMEs and large enterprises, to understand their competitive positioning fuels demand for sophisticated tools offering comprehensive data analysis and actionable insights. Cloud-based solutions are dominating the market due to their scalability, accessibility, and cost-effectiveness compared to on-premises deployments. Key players like SEMrush, Ahrefs, and SimilarWeb are establishing strong market presence through continuous innovation, comprehensive feature sets, and targeted marketing strategies. However, the market also faces challenges, including the rising costs of data acquisition and the complexity of integrating various tools into existing workflows. The competitive landscape is characterized by a mix of established players and emerging niche providers. Differentiation is achieved through unique data sources, specialized analytics capabilities, and the ability to integrate seamlessly with other marketing and business intelligence platforms. The North American and European markets currently hold a significant share, owing to high technology adoption and established digital marketing ecosystems. However, growth is expected in Asia-Pacific regions as businesses in developing economies increasingly adopt digital strategies and seek competitive advantages. The forecast period (2025-2033) suggests continued expansion, propelled by technological advancements like AI-powered insights and the expanding use of social media analytics within competitor analysis. The market's segmentation reflects varying needs across different business sizes and deployment preferences. While large enterprises typically opt for comprehensive, feature-rich solutions capable of handling large datasets and integrating with various systems, SMEs often prioritize cost-effective, user-friendly tools providing essential insights. The choice between cloud-based and on-premises solutions depends on factors like IT infrastructure, security considerations, and budget constraints. As the market matures, we anticipate further consolidation through mergers and acquisitions, and the emergence of more specialized tools catering to specific industry needs. The overall trajectory indicates continued strong growth, with a focus on enhanced data analysis, improved user experiences, and seamless integration within broader business intelligence platforms.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Host country of organization for 86 websites in study.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Alternative Data Market size was valued at USD 7.20 billion in 2023 and is projected to reach USD 126.50 billion by 2032, exhibiting a CAGR of 50.6 % during the forecasts period. Recent developments include: In April 2023, Thinknum Alternative Data launched new data fields to its employee sentiment datasets for people analytics teams and investors to use this as an 'employee NPS' proxy, and support highly-rated employers set up interviews through employee referrals. , In September 2022, Thinknum Alternative Data announced its plan to combine data Similarweb, SensorTower, Thinknum, Caplight, and Pathmatics with Lagoon, a sophisticated infrastructure platform to deliver an alternative data source for investment research, due diligence, deal sourcing and origination, and post-acquisition strategies in private markets. , In May 2022, M Science LLC launched a consumer spending trends platform, providing daily, weekly, monthly, and semi-annual visibility into consumer behaviors and competitive benchmarking. The consumer spending platform provided real-time insights into consumer spending patterns for Australian brands and an unparalleled business performance analysis. .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Website type for the 86 websites in study.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Industry vertical of organization for 86 websites in study.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterGeneral data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed. Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes: Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 4.37(USD Billion) |
| MARKET SIZE 2025 | 4.71(USD Billion) |
| MARKET SIZE 2035 | 10.0(USD Billion) |
| SEGMENTS COVERED | Deployment Type, End User, Functionality, Pricing Model, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | increasing online presence, data-driven decision making, growing e-commerce sector, demand for real-time analytics, rising mobile traffic |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Statcounter, Chartbeat, Kissmetrics, SAP, Piwik PRO, Crazy Egg, Google, Heap, Microsoft, Adobe, Salesforce, SimilarWeb, Mixpanel, IBM, Oracle |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for real-time data, Integration with AI-driven analytics, Rising adoption of e-commerce platforms, Enhanced focus on user experience, Growing need for data privacy compliance |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.8% (2025 - 2035) |
Facebook
TwitterComprehensive dataset analyzing eBay's daily visitor traffic patterns, geographic distribution, device usage, and competitive positioning based on third-party analytics from Similarweb and Semrush.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Notice: You can check the new version 0.9.6 at the official page of Information Management Lab and at the Google Data Studio as well.
Now that the ICTs have matured, Information Organizations such as Libraries, Archives and Museums, also known as LAMs, proceed into the utilization of web technologies that are capable to expand the visibility and findability of their content. Within the current flourishing era of the semantic web, LAMs have voluminous amounts of web-based collections that are presented and digitally preserved through their websites. However, prior efforts indicate that LAMs suffer from fragmentation regarding the determination of well-informed strategies for improving the visibility and findability of their content on the Web (Vállez and Ventura, 2020; Krstić and Masliković, 2019; Voorbij, 2010). Several reasons related to this drawback. As such, administrators’ lack of data analytics competency in extracting and utilizing technical and behavioral datasets for improving visibility and awareness from analytics platforms; the difficulties in understanding web metrics that integrated into performance measurement systems; and hence the reduced capabilities in defining key performance indicators for greater usability, visibility, and awareness.
In this enriched and updated technical report, the authors proceed into an examination of 504 unique websites of Libraries, Archives and Museums from all over the world. It is noted that the current report has been expanded by up to 14,81% of the prior one Version 0.9.5 of 439 domains examinations. The report aims to visualize the performance of the websites in terms of technical aspects such as their adequacy to metadata description of their content and collections, their loading speed, and security. This constitutes an important stepping-stone for optimization, as the higher the alignment with the technical compliencies, the greater the users’ behavior and usability within the examined websites, and thus their findability and visibility level in search engines (Drivas et al. 2020; Mavridis and Symeonidis 2015; Agarwal et al. 2012).
One step further, within this version, we include behavioral analytics about users engagement with the content of the LAMs websites. More specifically, web analytics metrics are included such as Visit Duration, Pages per Visit, and Bounce Rates for 121 domains. We also include web analytics regarding the channels that these websites acquire their users, such as Direct traffic, Search Engines, Referral, Social Media, Email, and Display Advertising. SimilarWeb API was used to gather web data about the involved metrics.
In the first pages of this report, general information is presented regarding the names of the examined organizations. This also includes their type, their geographical location, information about the adopted Content Management Systems (CMSs), and web server software types of integration per website. Furthermore, several other data are visualized related to the size of the examined Information Organizations in terms of the number of unique webpages within a website, the number of images, internal and external links and so on.
Moreover, as a team, we proceed into the development of several factors that are capable to quantify the performance of websites. Reliability analysis takes place for measuring the internal consistency and discriminant validity of the proposed factors and their included variables. For testing the reliability, cohesion, and consistency of the included metrics, Cronbach’s Alpha (a), McDonald’s ω and Guttman λ-2 and λ-6 are used.
- For Cronbach’s, a range of .550 up to .750 indicates an acceptable level of reliability and .800 or higher a very good level (Ursachi, Horodnic, and Zait, 2015).
- McDonald’s ω indicator has the advantage to measure the strength of the association between the proposed variables. More specifically, the closer to .999 the higher the strength association between the variables and vice versa (Şimşek and Noyan, 2013).
- Gutman’s λ-2 and λ-6 work verifiably to Cronbach’s a as they estimate the trustworthiness of variance of the gathered web analytics metrics. Low values less than .450 indicate high bias among the harvested web metrics, while values higher than .600 and above increase the trustworthiness of the sample (Callender and Osburn, 1979).
-Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity indicators are used for measuring the cohesion of the involved metrics. KMO and Bartlett’s test indicates that the closer the value is to .999 amongst the involved items, the higher the cohesion and consistency of them for potential categorization (Dziuban and S...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 4 parts. "SimilarWeb dataset with screenshots" is created by scraping web elements, their CSS, and corresponding screenshots in three different time intervals for around 100 web pages. Based on this data, the "SimilarWeb dataset with SSIM column" is created with the target column containing the structural similarity index measure (SSIM) of the captured screenshots. This part of the dataset is used to train machine learning regression models. To evaluate approach, "Accessible web pages dataset" and "General use web pages dataset" parts of the dataset are used.
Facebook
TwitterОпределение: Общий трафик на 15 сайтов с искусственным интеллектом со стационарных и мобильных компьютеров в каждой стране. [Переведено с en: английского языка] Тематическая область: Информационно-коммуникационные технологии [Переведено с en: английского языка] Область применения: Искусственный интеллект [Переведено с en: английского языка] Единица измерения: Количество посещений [Переведено с en: английского языка] Примечание: Similarweb не предоставляет точных данных о количестве посещений веб-сайтов, которые посещают менее 5000 человек. В этих случаях используется приблизительная оценка в 4999 посещений. [Переведено с es: испанского языка] Источник данных: Цифровая обсерватория Десарролло (ODD) на основе Similarweb [Переведено с es: испанского языка] Последнее обновление: Feb 9 2024 1:04PM Организация-источник: Экономическая комиссия по Латинской Америке и Карибскому бассейну [Переведено с en: английского языка] Definition: Total traffic to 15 artificial intelligence sites from fixed and mobile computers per country. Thematic Area: Information and Communication Technologies Application Area: Artificial intelligence Unit of Measurement: Number of visits Note: Similarweb does not provide an exact number of visits for websites that receive fewer than 5,000 visits. In these cases, an approximate estimate of 4,999 is used. Data Source: Observatorio de Desarrollo Digital (ODD) based on Similarweb Last Update: Feb 9 2024 1:04PM Source Organization: Economic Comission for Latin America and the Caribbean
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Puff Bar, a disposable electronic nicotine delivery system (ENDS), was the ENDS brand most commonly used by U.S. youth in 2021. We explored whether Puff Bar’s rise in marketplace prominence was detectable through advertising, retail sales, social media, and web traffic data sources. We retrospectively documented potential signals of interest in and uptake of Puff Bar in the United States using metrics based on advertising (Numerator and Comperemedia), retail sales (NielsenIQ), social media (Twitter, via Sprinklr), and web traffic (Similarweb) data from January 2019 to June 2022. We selected metrics based on (1) data availability, (2) potential to graph metric longitudinally, and (3) variability in metric. We graphed metrics and assessed data patterns compared to data for Vuse, a comparator product, and in the context of regulatory events significant to Puff Bar. The number of Twitter posts that contained a Puff Bar term (social media), Puff Bar product sales measured in dollars (sales), and the number of visits to the Puff Bar website (web traffic) exhibited potential for surveilling Puff Bar due to ease of calculation, comprehensibility, and responsiveness to events. Advertising tracked through Numerator and Comperemedia did not appear to capture marketing from Puff Bar’s manufacturer or drive change in marketplace prominence. This study demonstrates how quantitative changes in metrics developed using advertising, retail sales, social media, and web traffic data sources detected changes in Puff Bar’s marketplace prominence. We conclude that low-effort, scalable, rapid signal detection capabilities can be an important part of a multi-component tobacco surveillance program.
Facebook
TwitterОпределение: Измерение и классификация потока посетителей или пользователей веб-сайтов на основе различных категорий или тематик. Это включает в себя анализ и категоризацию веб-трафика с точки зрения областей или типов контента, который посетители ищут или потребляют. [Переведено с en: английского языка] Тематическая область: Информационно-коммуникационные технологии [Переведено с en: английского языка] Область применения: Веб-трафик [Переведено с en: английского языка] Примечание: Веб-трафик охватывает активность как на настольных компьютерах, так и на мобильных устройствах. Категория электронной коммерции включает трафик на сайты, относящиеся к категории электронной коммерции и торговых площадок. [Переведено с es: испанского языка] Источник данных: Цифровая обсерватория Десарролло (ODD) на основе Similarweb [Переведено с es: испанского языка] Последнее обновление: Jan 31 2024 6:02PM Организация-источник: Экономическая комиссия по Латинской Америке и Карибскому бассейну [Переведено с en: английского языка] Definition: Measurement and classification of the flow of visitors or users on websites based on different categories or topics. This involves analyzing and categorizing web traffic in terms of the areas or types of content that visitors are seeking or consuming. Thematic Area: Information and Communication Technologies Application Area: Web traffic Note: Web traffic encompasses both desktop and mobile device activity. The e-Commerce category includes traffic to sites categorized as e-Commerce and Marketplaces. Data Source: Observatorio de Desarrollo Digital (ODD) based on Similarweb Last Update: Jan 31 2024 6:02PM Source Organization: Economic Comission for Latin America and the Caribbean
Facebook
TwitterThis statistic shows the leading online dating websites in the Netherlands as of January 2017, based on the number of visitors per month. The source mentions that dating websites in the Netherlands do not provide this information and the data comes from intelligence agency Similarweb. As of January 2017, Lexa.nl was the most popular online dating website in the Netherlands, with 426,000 monthly visitors.
During the second half of 2017, roughly 17 percent of the Dutch internet users indicated they visited an online dating website, service or app. Users aged 16 to 24 years did this the most: approximately 22 percent of all users in this age group indicated they did so.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Difference uses Google Analytics as the Baseline. Results based on Paired t-Test for Hypotheses Supported.