https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CES0500000003) from Mar 2006 to May 2025 about earnings, average, establishment survey, hours, wages, private, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment Cost Index: Wages and Salaries: Private Industry Workers: Manufacturing (ECIMANWAG) from Q1 2001 to Q1 2025 about ECI, salaries, workers, private industries, wages, private, manufacturing, industry, inflation, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over from Q1 1979 to Q1 2025 about full-time, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Occupational Employment Statistics (OES) and National Compensation Survey (NCS) programs have produced estimates by borrowing from the strength and breadth of each survey to provide more details on occupational wages than either program provides individually. Modeled wage estimates provide annual estimates of average hourly wages for occupations by selected job characteristics and within geographical location. The job characteristics include bargaining status (union and nonunion), part- and full-time work status, incentive- and time-based pay, and work levels by occupation.
Direct estimates are based on survey responses only from the particular geographic area to which the estimate refers. In contrast, modeled wage estimates use survey responses from larger areas to fill in information for smaller areas where the sample size is not sufficient to produce direct estimates. Modeled wage estimates require the assumption that the patterns to responses in the larger area hold in the smaller area.
The sample size for the NCS is not large enough to produce direct estimates by area, occupation, and job characteristic for all of the areas for which the OES publishes estimates by area and occupation. The NCS sample consists of 6 private industry panels with approximately 3,300 establishments sampled per panel, and 1,600 sampled state and local government units. The OES full six-panel sample consists of nearly 1.2 million establishments.
The sample establishments are classified in industry categories based on the North American Industry Classification System (NAICS). Within an establishment, specific job categories are selected to represent broader occupational definitions. Jobs are classified according to the Standard Occupational Classification (SOC) system.
Summary: Average hourly wage estimates for civilian workers in occupations by job characteristic and work levels. These data are available at the national, state, metropolitan, and nonmetropolitan area levels.
Frequency of Observations: Data are available on an annual basis, typically in May.
Data Characteristics: All hourly wages are published to the nearest cent.
This dataset was taken directly from the Bureau of Labor Statistics and converted to CSV format.
This dataset contains the estimated wages of civilian workers in the United States. Wage changes in certain industries may be indicators for growth or decline. Which industries have had the greatest increases in wages? Combine this dataset with the Bureau of Labor Statistics Consumer Price Index dataset and find out what kinds of jobs you would need to afford your snacks and instant coffee!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The series comes from the 'Current Employment Statistics (Establishment Survey).' The source code is: CES0500000003
The Average Hourly Earnings of All Private Employees is a measure of the average hourly earnings of all private employees on a “gross” basis, including premium pay for overtime and late-shift work. These differ from wage rates in that average hourly earnings measure the actual return to a worker for a set period of time, rather than the amount contracted for a unit of work, the wage rate. This measure excludes benefits, irregular bonuses, retroactive pay, and payroll taxes paid by the employer.
Average Hourly Earnings are collected in the Current Employment Statistics (CES) program and published by the BLS. It is provided on a monthly basis, so this data is used in part by macroeconomists as an initial economic indicator of current trends. Progressions in earnings specifically help policy makers understand some of the pressures driving inflation.
It is important to note that this series measures the average hourly earnings of the pool of workers in each period. Thus, changes in average hourly earnings can be due to either changes in the set of workers observed in a given period, or due to changes in earnings. For instance, in recessions that lead to the disproportionate increase of unemployment in lower-wage jobs, average hourly earnings can increase due to changes in the pool of workers rather than due to the widespread increase of hourly earnings at the worker-level.
For more information, see: U.S. Bureau of Labor Statistics, CES Overview (https://www.bls.gov/web/empsit/cesprog.htm) U.S. Bureau of Labor Statistics, BLS Handbook of Methods: Chapter 2. Employment, Hours, and Earnings from the Establishment Survey (https://www.bls.gov/opub/hom/pdf/ces-20110307.pdf)
https://www.icpsr.umich.edu/web/ICPSR/studies/36312/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36312/terms
The Quarterly Census of Employment and Wages (QCEW) program is a cooperative program involving the Bureau of Labor Statistics (BLS) of the United States Department of Labor and the State Employment Security Agencies (SESAs). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Publicly available data files include information on the number of establishments, monthly employment, and quarterly wages, by NAICS industry, by county, by ownership sector, for the entire United States. These data are aggregated to annual levels, to higher industry levels (NAICS industry groups, sectors, and supersectors), and to higher geographic levels (national, State, and Metropolitan Statistical Area (MSA)). To download and analyze QCEW data, users can begin on the QCEW Databases page. Downloadable data are available in formats such as text and CSV. Data for the QCEW program that are classified using the North American Industry Classification System (NAICS) are available from 1990 forward, and on a more limited basis from 1975 to 1989. These data provide employment and wage information for arts-related NAICS industries, such as: Arts, entertainment, and recreation (NAICS Code 71) Performing arts and spectator sports Museums, historical sites, zoos, and parks Amusements, gambling, and recreation Professional, scientific, and technical services (NAICS Code 54) Architectural services Graphic design services Photographic services Retail trade (NAICS Code 44-45) Sporting goods, hobby, book and music stores Book, periodical, and music stores Art dealers For years 1975-2000, data for the QCEW program provide employment and wage information for arts-related industries are based on the Standard Industrial Classification (SIC) system. These arts-related SIC industries include the following: Book stores (SIC 5942) Commercial photography (SIC Code 7335) Commercial art and graphic design (SIC Code 7336) Museums, Botanical, Zoological Gardens (SIC Code 84) Dance studios, schools, and halls (SIC Code 7911) Theatrical producers and services (SIC Code 7922) Sports clubs, managers, & promoters (SIC Code 7941) Motion Picture Services (SIC Code 78) The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit NAICS industry at the national, state, and county levels. At the national level, the QCEW program provides employment and wage data for almost every NAICS industry. At the State and area level, the QCEW program provides employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. Employment data under the QCEW program represent the number of covered workers who worked during, or received pay for, the pay period including the 12th of the month. Excluded are members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Wages represent total compensation paid during the calendar quarter, regardless of when services were performed. Included in wages are pay for vacation and other paid leave, bonuses, stock options, tips, the cash value of meals and lodging, and in some States, contributions to deferred compensation plans (such as 401(k) plans). The QCEW program does provide partial information on agricultural industries and employees in private households. Data from the QCEW program serve as an important source for many BLS programs. The QCEW data are used as the benchmark source for employment by the Current Employment Statistics program and the Occupational Employment Statistics program. The UI administrative records collected under the QCEW program serve as a sampling frame for BLS establishment surveys. In addition, data from the QCEW program serve as a source to other Federal and State programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses QCEW data as the base for developing the wage and salary component of personal income. The Employment and Training Administration (ETA) of the Department of Labor and the SESAs use QCEW data to administer the employment security program. The QCEW data accurately reflect the ex
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
On April 26, 2006, The Employment Cost Index converted to the 2002 North American Industry Classification System (NAICS) and the 2000 Standard Occupational Classification System (SOC). In addition, several computational changes were introduced, including rebasing all series to December 2005=100 from June 1989=100, the introduction of new employment weights and seasonal adjustment factors. For more detailed information on NAICS and SOC, including background and definitions, please see the Bureau of Labor Statistics (BLS) websites: https://www.bls.gov/bls/naics.htm (https://www.bls.gov/bls/naics.htm) and http://www.bls.gov/soc/home.htm (http://www.bls.gov/soc/home.htm).
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of Production and Nonsupervisory Employees, Total Private (AHETPI) from Jan 1964 to May 2025 about nonsupervisory, headline figure, earnings, average, establishment survey, hours, wages, production, private, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Weekly Earnings of All Employees, Total Private (CEU0500000011) from Mar 2006 to May 2025 about earnings, establishment survey, private, employment, and USA.
https://www.icpsr.umich.edu/web/ICPSR/studies/36170/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36170/terms
The Consumer Expenditure Survey (CE) program consists of two surveys: the quarterly Interview survey and the annual Diary survey. Combined, these two surveys provide information on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. The survey data are collected for the U.S. Bureau of Labor Statistics (BLS) by the U.S. Census Bureau. The CE collects all on all spending components including food, housing, apparel and services, transportation, entertainment, and out-of-pocket health care costs. The CE tables are an easy-to-use tool for obtaining arts-related spending estimates. They feature several arts-related spending categories, including the following items: Spending on Admissions Plays, theater, opera, and concerts Movies, parks, and museums Spending on Reading Newspapers and magazines Books Digital book readers Spending on Other Arts-Related Items Musical instruments Photographic equipment Audio-visual equipment Toys, games, arts and crafts The CE is important because it is the only Federal survey to provide information on the complete range of consumers' expenditures and incomes, as well as the characteristics of those consumers. It is used by economic policymakers examining the impact of policy changes on economic groups, by the Census Bureau as the source of thresholds for the Supplemental Poverty Measure, by businesses and academic researchers studying consumers' spending habits and trends, by other Federal agencies, and, perhaps most importantly, to regularly revise the Consumer Price Index market basket of goods and services and their relative importance. The most recent data tables are for 2023 and include: 1) Detailed tables with the most granular level of expenditure data available, along with variances and percent reporting for each expenditure item, for all consumer units (listed as "Other" in the Download menu); and 2) Tables with calendar year aggregate shares by demographic characteristics that provide annual aggregate expenditures and shares across demographic groups (listed as "Excel" in the Download menu). Also, see Featured CE Tables and Economic News Releases sections on the CE home page for current data tables and news release. The 1980 through 2023 CE public-use microdata, including Interview Survey data, Diary Survey data, and paradata (information about the data collection process), are available on the CE website.
In 2023, the U.S. Consumer Price Index was 309.42, and is projected to increase to 352.27 by 2029. The base period was 1982-84. The monthly CPI for all urban consumers in the U.S. can be accessed here. After a time of high inflation, the U.S. inflation rateis projected fall to two percent by 2027. United States Consumer Price Index ForecastIt is projected that the CPI will continue to rise year over year, reaching 325.6 in 2027. The Consumer Price Index of all urban consumers in previous years was lower, and has risen every year since 1992, except in 2009, when the CPI went from 215.30 in 2008 to 214.54 in 2009. The monthly unadjusted Consumer Price Index was 296.17 for the month of August in 2022. The U.S. CPI measures changes in the price of consumer goods and services purchased by households and is thought to reflect inflation in the U.S. as well as the health of the economy. The U.S. Bureau of Labor Statistics calculates the CPI and defines it as, "a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services." The BLS records the price of thousands of goods and services month by month. They consider goods and services within eight main categories: food and beverage, housing, apparel, transportation, medical care, recreation, education, and other goods and services. They aggregate the data collected in order to compare how much it would cost a consumer to buy the same market basket of goods and services within one month or one year compared with the previous month or year. Given that the CPI is used to calculate U.S. inflation, the CPI influences the annual adjustments of many financial institutions in the United States, both private and public. Wages, social security payments, and pensions are all affected by the CPI.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of Production and Nonsupervisory Employees, Manufacturing (CES3000000008) from Jan 1939 to May 2025 about nonsupervisory, earnings, establishment survey, hours, wages, production, manufacturing, employment, and USA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the sources of data, establishments, employment, and wages are taken from the Quarterly Census of Employment and Wages (QCEW). The data series also is known as the ES-202 data. These data are based on the quarterly reports of nearly all employers in the United States. These reports are filed with each state's employment or labor department, and each state then transmits the data to the Bureau of Labor Statistics (BLS), where the national databases are maintained. The data for the Coastal Economies have been taken from the national databases at BLS (except in the case of Massachusetts). Gross State Product (GSP) data are taken from the Bureau of Economic Analysis (BEA), which develops the estimates of GSP from a number of sources. In regard to "employment", data are reported by employers, not employees, and does not contain any information about age. There is no difference between "employed" and "employment". The source is known as the payroll survey, a survey filed by employers every 3 months showing the number of people employed at each establishment in each of the preceding 3 months. Detailed information on the geographies the data are available for can be found here: https://coast.noaa.gov/htdata/SocioEconomic/CoastalEconomy/CoastalEconomy_DataDescription.pdf
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Leisure and Hospitality (CES7000000003) from Mar 2006 to May 2025 about leisure, hospitality, earnings, establishment survey, hours, wages, employment, and USA.
The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. To meet the needs of users, the Bureau of Labor Statistics (BLS) produces population estimates (for consumer units or CUs) of average expenditures in news releases, reports, and articles in the Monthly Labor Review. Tabulated CE data are also available on the Internet and by facsimile transmission (see Section XVI. Appendix 5). The microdata are available on CD-ROM as SAS data sets or ASCII text files.
These microdata files present detailed expenditure and income data for the Diary component of the CE for 2006. They include weekly expenditure (EXPN), annual income (DTAB) files, and imputed income files (DTAB_IMPUTE). The data in EXPN, DTAB, and DTAB_IMPUTE files are categorized by a Universal Classification Code (UCC). The advantage of the EXPN and DTAB files is that with the data classified in a standardized format, the user may perform comparative expenditure (income) analysis with relative ease. The FMLY and MEMB files present data on the characteristics and demographics of CUs and CU members. The summary level expenditure and income information on the FMLY files permits the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files.
Estimates of average expenditures in 2006 from the Diary survey, integrated with data from the Interview survey, are published in Consumer Expenditures in 2006. A list of recent publications containing data from the CE appears at the end of this documentation. The microdata files are in the public domain and, with appropriate credit, may be reproduced without permission. A suggested citation is: “U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey, Diary Survey, 2006”.
The Diary survey PUMD are organized into five major data files for each quarter:
1. FMLD - a file with characteristics, income, and summary level expenditures for the household
2. MEMD - a file with characteristics and income for each member in the household
3. EXPD - a detailed weekly expenditure file categorized by UCC
4. DTBD - a detailed annual income file categorized by UCC
5. DTID - a household imputed income file categorized by UCC
Consumer Unit
Sample survey data [ssd]
A. SURVEY SAMPLE DESIGN
Samples for the CE are national probability samples of households designed to be representative of the total U. S. civilian population. Eligible population includes all civilian noninstitutional persons.
The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2006 sample is composed of 91 areas. The design classifies the PSUs into four categories:
• 21 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. • 38 "X" PSUs, are medium-sized MSAs. • 16 "Y" PSUs are nonmetropolitan areas that are included in the CPI. • 16 "Z" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2006 survey is generated from the 2000 Population Census file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (EDs) from the Census that fail to meet the criterion for good addresses for new construction, and all EDs in nonpermit-issuing areas are grouped into the area segment frame.
To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance. Each selected sample unit is requested to keep two 1-week diaries of expenditures over consecutive weeks. The earliest possible day for placing a diary with a household is predesignated with each day of the week having an equal chance to be the first of the reference week. The diaries are evenly spaced throughout the year.
B. COOPERATION LEVELS
The annual target sample size at the United States level for the Diary Survey is 7,200 participating sample units. To achieve this target the total estimated work load is 12,200 sample units. This allows for refusals, vacancies, or nonexistent sample unit addresses.
Each participating sample unit selected is asked to keep two 1-week diaries. Each diary is treated independently, so response rates are based on twice the number of housing units sampled.
Computer Assisted Personal Interview [capi]
The response rate for the 2006 Diary Survey is 74.2%. This response rate refers to all diaries in the year.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Construction (CES2000000003) from Mar 2006 to May 2025 about earnings, establishment survey, hours, construction, wages, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Retail Trade (CES4200000003) from Mar 2006 to May 2025 about earnings, establishment survey, hours, retail trade, wages, sales, retail, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment Cost Index: Wages and salaries for Private industry workers in Transportation and warehousing (CIS2024300000000I) from Q1 2003 to Q1 2025 about ECI, warehousing, salaries, workers, transportation, private industries, wages, private, industry, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment Cost Index: Wages and Salaries: State and Local Government: All Workers (ECIGVTWAG) from Q1 2001 to Q1 2025 about state & local, ECI, salaries, workers, wages, government, inflation, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Transportation and Warehousing (CES4300000003) from Mar 2006 to May 2025 about warehousing, earnings, transportation, establishment survey, hours, wages, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CES0500000003) from Mar 2006 to May 2025 about earnings, average, establishment survey, hours, wages, private, employment, and USA.