In 2023, married couple without children households spent 88,684 U.S. dollars on average. Married couples with an eldest child between the ages of 6 and 17 had the highest average expenditure, at 117,808 U.S. dollars.
In 2023, a four-person household could be expected to spend about 105,683 U.S. dollars. Interestingly, when there are five or more people in a household, spending declines compared to four-person households. Average annual spending across all consumer units amounted to around 77,280 U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about United States Household Expenditure per Capita
In 2023, the average annual expenditures of households in the United States amounted to about 77,280 U.S. dollars per year. This was an increase from the previous year, reflecting an increase of around six percent between 2022 and 2023.
In 2023, the average consumer unit in the United States spent about 9,985 U.S. dollars on food. Americans spent the most on housing, at 25,436 U.S. dollars, reflecting around one third of annual expenditure. The total average U.S. consumer spending amounted to 77,280 U.S. dollars.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Expenditures: Total Average Annual Expenditures by Deciles of Income Before Taxes: Ninth 10 Percent (81st to 90th Percentile) (CXUTOTALEXPLB1510M) from 2014 to 2023 about percentile, tax, average, expenditures, income, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: GDP: Growth: Household Final Consumption Expenditure per Capita data was reported at 1.981 % in 2016. This records a decrease from the previous number of 2.862 % for 2015. United States US: GDP: Growth: Household Final Consumption Expenditure per Capita data is updated yearly, averaging 2.181 % from Dec 1971 (Median) to 2016, with 46 observations. The data reached an all-time high of 5.003 % in 1972 and a record low of -2.460 % in 2009. United States US: GDP: Growth: Household Final Consumption Expenditure per Capita data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Gross Domestic Product: Annual Growth Rate. Annual percentage growth of household final consumption expenditure per capita, which is calculated using household final consumption expenditure in constant 2010 prices and World Bank population estimates. Household final consumption expenditure (private consumption) is the market value of all goods and services, including durable products (such as cars, washing machines, and home computers), purchased by households. It excludes purchases of dwellings but includes imputed rent for owner-occupied dwellings. It also includes payments and fees to governments to obtain permits and licenses. Here, household consumption expenditure includes the expenditures of nonprofit institutions serving households, even when reported separately by the country.; ; World Bank national accounts data, and OECD National Accounts data files.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: GDP: Growth: Final Consumption Expenditure: Household data was reported at 2.733 % in 2016. This records a decrease from the previous number of 3.642 % for 2015. United States US: GDP: Growth: Final Consumption Expenditure: Household data is updated yearly, averaging 3.254 % from Dec 1971 (Median) to 2016, with 46 observations. The data reached an all-time high of 6.133 % in 1972 and a record low of -1.601 % in 2009. United States US: GDP: Growth: Final Consumption Expenditure: Household data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Gross Domestic Product: Annual Growth Rate. Annual percentage growth of household final consumption expenditure based on constant local currency. Aggregates are based on constant 2010 U.S. dollars. Household final consumption expenditure (formerly private consumption) is the market value of all goods and services, including durable products (such as cars, washing machines, and home computers), purchased by households. It excludes purchases of dwellings but includes imputed rent for owner-occupied dwellings. It also includes payments and fees to governments to obtain permits and licenses. Here, household consumption expenditure includes the expenditures of nonprofit institutions serving households, even when reported separately by the country.; ; World Bank national accounts data, and OECD National Accounts data files.; Weighted average;
The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. To meet the needs of users, the Bureau of Labor Statistics (BLS) produces population estimates for consumer units (CUs) of average expenditures in news releases, reports, issues, and articles in the Monthly Labor Review. Tabulated CE data are also available on the Internet and by facsimile transmission (See Section XV. APPENDIX 4). The microdata are available online at http://www/bls.gov/cex/pumdhome.htm. These microdata files present detailed expenditure and income data for the Diary component of the CE for 2002. They include weekly expenditure (EXPD) and annual income (DTBD) files. The data in EXPD and DTBD files are categorized by a Universal Classification Code (UCC). The advantage of the EXPD and DTBD files is that with the data classified in a standardized format, the user may perform comparative expenditure (income) analysis with relative ease. The FMLD and MEMD files present data on the characteristics and demographics of CUs and CU members. The summary level expenditure and income information on the FMLD files permits the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files. Estimates of average expenditures in 2002 from the Diary survey, integrated with data from the Interview survey, are published in Consumer Expenditures in 2002. A list of recent publications containing data from the CE appears at the end of this documentation. The microdata files are in the public domain and with appropriate credit, may be reproduced without permission. A suggested citation is: "U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey, Diary Survey, 2002".
Consumer Units
Sample survey data [ssd]
Samples for the CE are national probability samples of households designed to be representative of the total U. S. civilian population. Eligible population includes all civilian noninstitutional persons. The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2002 sample is composed of 105 areas. The design classifies the PSUs into four categories: • 31 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. • 46 "B" PSUs, are medium-sized MSA's. • 10 "C" PSUs are nonmetropolitan areas that are included in the CPI. • 18 "D" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2002 survey is generated from the 1990 Population Census 100-percent-detail file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (ED's) from the Census that fail to meet the criterion for good addresses for new construction, and all ED's in nonpermit-issuing areas are grouped into the area segment frame. To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance. Each selected sample unit is requested to keep two 1-week diaries of expenditures over consecutive weeks. The earliest possible day for placing a diary with a household is predesignated with each day of the week having an equal chance to be the first of the reference week. The diaries are evenly spaced throughout the year. During the last 6 weeks of the year, however, the Diary Survey sample is supplemented to twice its normal size to increase the reporting of types of expenditures unique to the holidays.
STATE IDENTIFIER Since the CE is not designed to produce state-level estimates, summing the consumer unit weights by state will not yield state population totals. A CU's basic weight reflects its probability of selection among a group of primary sampling units of similar characteristics. For example, sample units in an urban nonmetropolitan area in California may represent similar areas in Wyoming and Nevada. Among other adjustments, CUs are post-stratified nationally by sex-age-race. For example, the weights of consumer units containing a black male, age 16-24 in Alabama, Colorado, or New York, are all adjusted equivalently. Therefore, weighted population state totals will not match population totals calculated from other surveys that are designed to represent state data. To summarize, the CE sample was not designed to produce precise estimates for individual states. Although state-level estimates that are unbiased in a repeated sampling sense can be calculated for various statistical measures, such as means and aggregates, their estimates will generally be subject to large variances. Additionally, a particular state-population estimate from the CE sample may be far from the true state-population estimate.
INTERPRETING THE DATA Several factors should be considered when interpreting the expenditure data. The average expenditure for an item may be considerably lower than the expenditure by those CUs that purchased the item. The less frequently an item is purchased, the greater the difference between the average for all consumer units and the average of those purchasing. (See Section V.B. for ESTIMATION OF TOTAL AND MEAN EXPENDITURES). Also, an individual CU may spend more or less than the average, depending on its particular characteristics. Factors such as income, age of family members, geographic location, taste and personal preference also influence expenditures. Furthermore, even within groups with similar characteristics, the distribution of expenditures varies substantially. Expenditures reported are the direct out-of-pocket expenditures. Indirect expenditures, which may be significant, may be reflected elsewhere. For example, rental contracts often include utilities. Renters with such contracts would record no direct expense for utilities, and therefore, appear to have no utility expenses. Employers or insurance companies frequently pay other costs. CUs with members whose employers pay for all or part of their health insurance or life insurance would have lower direct expenses for these items than those who pay the entire amount themselves. These points should be considered when relating reported averages to individual circumstances.
Computer Assisted Personal Interview [capi]
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Personal Consumption Expenditures: Total for United States (USPCE) from 1997 to 2023 about PCE, consumption expenditures, consumption, personal, and USA.
In 2023, the average annual expenditures of consumer units in the United States totaled to 77,280 U.S. dollars. This is an increase from the previous year, when the average annual expenditures of consumer units totaled to 72,967 U.S. dollars.
The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index.
The CE program is comprised of two separate components (each with its own survey questionnaire and independent sample), the Diary Survey and the quarterly Interview Survey (ICPSR 36237). This data collection contains the Diary Survey component, which was designed to obtain data on frequently purchased smaller items, including food, housing, apparel and services, transportation, entertainment, and out-of-pocket health care costs. Each consumer unit (CU) recorded its expenditures in a diary for two consecutive 1-week periods. Although the diary was designed to collect information on expenditures that could not be easily recalled over time, respondents were asked to report all expenses (except overnight travel) that the CU incurred during the survey week.
The 2013 Diary Survey release contains five sets of data files (FMLD, MEMD, EXPD, DTBD, DTID), and one processing file (DSTUB). The FMLD, MEMD, EXPD, DTBD, and DTID files are organized by the quarter of the calendar year in which the data were collected. There are four quarterly datasets for each of these files.
The FMLD files contain CU characteristics, income, and summary level expenditures; the MEMD files contain member characteristics and income data; the EXPD files contain detailed weekly expenditures at the Universal Classification Code (UCC) level; the DTBD files contain the CU's reported annual income values or the mean of the five imputed income values in the multiple imputation method; and the DTID files contain the five imputed income values. Please note that the summary level expenditure and income information on the FMLD files permit the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files.
The DSTUB file provides the aggregation scheme used in the published consumer expenditure tables. The DSTUB file is further explained in Section III.F.6. 'Processing Files' of the Diary Survey Users' Guide. A second documentation guide, the 'Users' Guide to Income Imputation,' includes information on how to appropriately use the imputed income data.
Demographic and family characteristics data include age, sex, race, marital status, and CU relationships for each CU member. Income information was also collected, such as wage, salary, unemployment compensation, child support, and alimony, as well as information on the employment of each CU member age 14 and over.
The unpublished integrated CE data tables produced by the BLS are available to download through NADAC (click on 'Other' in the Dataset(s) section). The tables show average and percentile expenditures for detailed items, as well as the standard error and coefficient of variation (CV) for each spending estimate. The BLS unpublished integrated CE data tables are provided as an easy-to-use tool for obtaining spending estimates. However, users are cautioned to read the BLS explanatory letter accompanying the tables. The letter explains that estimates of average expenditures on detailed spending items (such as leisure and art-related categories) may be unreliable due to so few reports of expenditures for those items.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
blockgroupspending Opportunity US Consumers express their behavior in a number of ways, but critically in their spending decisions. The US Bureau of Labor Statistics is charged with publishing spending activity and provides its Consumer Expenditure Survey (CEX) annually with US totals, with selected states (40) and cities (23). Limited to aggregates, the survey only needs 10s of thousands of observations in the original collection. While this is sufficient for macroeconomic use, the volume gives a weak basis for estimating lower levels of geography. In addition, the CEX includes demographic measurements that are similar, but not directly related, to Census variables. So, the CEX does not integtate well with the American Commuity Survey or other Census publications. This blockgroupspending publication by Open Environments attempts to address this problem by using the BLS' Public Microdata (PUMD) sample to allocate CEX spending categories across 220,000 US Census block group geographies. For each block group, the effort applies two models to estimate: total consumer spending (regression) distribution of spending across spending categories (penetration) including Food, Transportation, Housing and Health costs. Ultimately, these project spending on block groups that can be joined to US Census publications for additional demographics. Understanding the results requires awareness of the BLS' CEX data structures. This is available in the markdown file named oe_bls_cex_EDA.md The publication is made together with the source python code and notebooks used for repeatability. The materials are maintained under version control at https://github.com/OpenEnvironments/blockgroupspending. All feedback and development requests are welcome. Model details -- The CEX publication includes many files reflecting detailed 'diary' surveys capturing spend on thousands of items every two weeks family 'interviews' collecting household spending over the previous 3 months The models are trained upon the latter, 'FMLI' files. The regression model uses extreme gradient boosting, or XGBoost methods that apply many decision trees to iteratively correct prediction error. The subcategory models also use tree based methods, trained upon a the family interview details. The spending variables are named, following the BLS' CEX convention: |Variable|Definition|2023|pct| |---|---|---|---| |TOTEXP|Average annual expenditures|77280|| |FOOD|Food|9985|0.129| |ALCBEV|Alcoholic beverages|637|0.008| |HOUS|Housing|25436|0.329| |APPAR|Apparel and services|2041|0.026| |TRANS|Transportation|13174|0.17| |HEALTH|Healthcare|6159|0.08| |ENTERT|Entertainment|3635|0.047| |PERSCA|Personal care products and services|950|0.012| |READ|Reading|117|0.002| |EDUCA|Education|1656|0.021| |TOBACC|Tobacco products and smoking supplies|370|0.005| |MISC|Miscellaneous|1184|0.015| |CASHCO|Cash contributions|2378|0.031| |RETPEN|Personal insurance and pensions|9556|0.124| During the exploratory phase of this effort, ensemble modelling was evaluated finding that different groupings of income did not appreciably change model estimates while racial and ethnic categories did. As a result, the models are case for major races (White, African American, Asian, Other) and Hispanic. The ACS is collected by API at the block group level. Block group geographies are the lowest level of Census ACS detail and consolidate into Census tracts which in turn consolidate into counties. The FMLI responses are recorded in nominal dollars throughout the year, while total expenditure and ACS data represent year end states. As a result, the models' prediction for total expenditure is cast up using monthly inflation, weighted by monthly expenditure. Additional Caveats It is import to note, analytically, that the results are a stretch for credibility. CEX Consumer Units (people sharing financial decisions) are not exactly Census households (people in a housing unit) CEX demographics are not exactly Census demographics, with the CEX imputing incomes differenly than the Census medians. The CEX applies population weightings to the microdata while the Census primarily aggregates from respondents. The CEX observations are from 1 household (race is a 0/1 indicator) while Census demographics are many households (races are proportions) Models are trained upon repeated measures from a Consumer unit but not revised for ANOVA. Several of the CEX subcategories are very small, as spending has changed over the years. Reading, Alcohol and Tobacco use are still top level subcategories, for example as those have declined significantly since the CEX was first designed. So, this model is limited to the major subcategories of food, housing, transportation, health and retirement spending.* The model apply machine learning to large datasets so significance is not a consideration. However, in practice, those very small subcategories should be avoided. Difference in spending across racial categories also have different...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: GDP: Growth: Final Consumption Expenditure data was reported at 2.425 % in 2016. This records a decrease from the previous number of 3.232 % for 2015. United States US: GDP: Growth: Final Consumption Expenditure data is updated yearly, averaging 2.905 % from Dec 1971 (Median) to 2016, with 46 observations. The data reached an all-time high of 5.191 % in 1985 and a record low of -0.581 % in 2009. United States US: GDP: Growth: Final Consumption Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Gross Domestic Product: Annual Growth Rate. Average annual growth of final consumption expenditure based on constant local currency. Aggregates are based on constant 2010 U.S. dollars. Final consumption expenditure (formerly total consumption) is the sum of household final consumption expenditure (formerly private consumption) and general government final consumption expenditure (formerly general government consumption). This estimate includes any statistical discrepancy in the use of resources relative to the supply of resources.; ; World Bank national accounts data, and OECD National Accounts data files.; Weighted average;
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Expenditures: Total Average Annual Expenditures by Housing Tenure: Home Owner (CXUTOTALEXPLB1702M) from 1984 to 2023 about homeownership, average, expenditures, housing, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Personal Consumption Expenditures (PCEC96) from Jan 2007 to May 2025 about headline figure, PCE, consumption expenditures, consumption, personal, real, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data was reported at 0.781 % in 2013. This records a decrease from the previous number of 0.856 % for 2012. United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data is updated yearly, averaging 0.880 % from Dec 1995 (Median) to 2013, with 18 observations. The data reached an all-time high of 1.078 % in 2000 and a record low of 0.724 % in 2008. United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Poverty. Proportion of population spending more than 25% of household consumption or income on out-of-pocket health care expenditure, expressed as a percentage of a total population of a country; ; Wagstaff et al. Progress on catastrophic health spending: results for 133 countries. A retrospective observational study, Lancet Global Health 2017.; Weighted Average;
This statistic shows the average annual expenditure on household textiles per consumer unit in the United States from 2007 to 2023. In 2023, the country's average expenditure on household textiles amounted to 127.66 U.S. dollars per consumer unit.
This statistic shows the average annual expenditure on girls' apparel per consumer unit in the United States in 2023, by category. That year, the country's average expenditure on girls' accessories amounted to 5.54 U.S. dollars per consumer unit.
The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. To meet the needs of users, the Bureau of Labor Statistics (BLS) produces population estimates (for consumer units or CUs) of average expenditures in news releases, reports, and articles in the Monthly Labor Review. Tabulated CE data are also available on the Internet and by facsimile transmission (see Section XVI. Appendix 5). These microdata files present detailed expenditure and income data for the Diary component of the CE for 2005. They include weekly expenditure (EXPD), annual income (DTBD) files, and imputed income files (DTID). The data in EXPD, DTBD, and DTID files are categorized by a Universal Classification Code (UCC). The advantage of the EXPD and DTBD files is that with the data classified in a standardized format, the user may perform comparative expenditure (income) analysis with relative ease. The FMLD and MEMD files present data on the characteristics and demographics of CUs and CU members. The summary level expenditure and income information on the FMLD files permits the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files. Estimates of average expenditures in 2005 from the Diary survey, integrated with data from the Interview survey, are published in Consumer Expenditures in 2005. A list of recent publications containing data from the CE appears at the end of this documentation.
The microdata files are in the public domain and, with appropriate credit, may be reproduced without permission. A suggested citation is: “U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey, Diary Survey, 2005”.
State Identifier Since the CE is not designed to produce state-level estimates, summing the consumer unit weights by state will not yield state population totals. A CU's basic weight reflects its probability of selection among a group of primary sampling units of similar characteristics. For example, sample units in an urban nonmetropolitan area in California may represent similar areas in Wyoming and Nevada. Among other adjustments, CUs are post-stratified nationally by sex-age-race. For example, the weights of consumer units containing a black male, age 16-24 in Alabama, Colorado, or New York, are all adjusted equivalently. Therefore, weighted population state totals will not match population totals calculated from other surveys that are designed to represent state data.
To summarize, the CE sample was not designed to produce precise estimates for individual states. Although state-level estimates that are unbiased in a repeated sampling sense can be calculated for various statistical measures, such as means and aggregates, their estimates will generally be subject to large variances. Additionally, a particular state-population estimate from the CE sample may be far from the true state-population estimate.
Interpreting the data Several factors should be considered when interpreting the expenditure data. The average expenditure for an item may be considerably lower than the expenditure by those CUs that purchased the item. The less frequently an item is purchased, the greater the difference between the average for all consumer units and the average of those purchasing. (See Section V.B. for ESTIMATION OF TOTAL AND MEAN EXPENDITURES). Also, an individual CU may spend more or less than the average, depending on its particular characteristics. Factors such as income, age of family Members, geographic location, taste and personal preference also influence expenditures. Furthermore, even within groups with similar characteristics, the distribution of expenditures varies substantially.
Expenditures reported are the direct out-of-pocket expenditures. Indirect expenditures, which may be significant, may be reflected elsewhere. For example, rental contracts often include utilities. Renters with such contracts would record no direct expense for utilities, and therefore, appear to have no utility expenses. Employers or insurance companies frequently pay other costs.CUs with Members whose employers pay for all or part of their health insurance or life insurance would have lower direct expenses for these items than those who pay the entire amount themselves. These points should be considered when relating reported averages to individual circumstances.
The Diary survey PUMD are organized into five major data files for each quarter:
1. FMLD - a file with characteristics, income, and summary level expenditures for the household
2. MEMD - a file with characteristics and income for each member in the household
3. EXPD - a detailed weekly expenditure file categorized by UCC
4. DTBD - a detailed annual income file categorized by UCC
5. DTID - a household imputed income file categorized by UCC
Consumer Unit
Sample survey data [ssd]
A. SURVEY SAMPLE DESIGN
Samples for the CE are national probability samples of households designed to be representative of the total U. S. civilian population. Eligible population includes all civilian noninstitutional persons.
The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2005 sample is composed of 102 areas. The design classifies the PSUs into four categories:
• 28 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. • 42 "B" PSUs, are medium-sized MSAs. • 16 "C" PSUs are nonmetropolitan areas that are included in the CPI. • 16 "D" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2005 survey is generated from the 2000 Population Census file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (EDs) from the Census that fail to meet the criterion for good addresses for new construction, and all EDs in nonpermit-issuing areas are grouped into the area segment frame.
To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance.
Each selected sample unit is requested to keep two 1-week diaries of expenditures over consecutive weeks. The earliest possible day for placing a diary with a household is predesignated with each day of the week having an equal chance to be the first of the reference week. The diaries are evenly spaced throughout the year.
B. COOPERATION LEVELS
The annual target sample size at the United States level for the Diary Survey is 7,800 participating sample units. To achieve this target the total estimated work load is 11,275 sample units. This allows for refusals, vacancies, or nonexistent sample unit addresses.
Each participating sample unit selected is asked to keep two 1-week diaries. Each diary is treated independently, so response rates are based on twice the number of housing units sampled.
Computer Assisted Personal Interview [capi]
The response rate for the 2005 Diary Survey is 68.9%. This response rate refers to all diaries in the year.
In 2023, married couple without children households spent 88,684 U.S. dollars on average. Married couples with an eldest child between the ages of 6 and 17 had the highest average expenditure, at 117,808 U.S. dollars.