94 datasets found
  1. U.S. total number of fatalities 1990-2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. total number of fatalities 1990-2023 [Dataset]. https://www.statista.com/statistics/195920/number-of-deaths-in-the-united-states-since-1990/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, about **** million deaths were reported in the United States. This figure is an increase from **** million deaths reported in 1990, and from **** in 2019. This sudden increase can be attributed to the COVID-19 pandemic.

  2. Death rate in the USA 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Death rate in the USA 2023 [Dataset]. https://www.statista.com/statistics/269970/death-rate-in-the-usa/
    Explore at:
    Dataset updated
    Jun 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The death rate in the United States decreased by 0.6 deaths per 1,000 inhabitants (-6.12 percent) compared to the previous year. Nevertheless, the last two years recorded a significantly higher death rate than the preceding years.The crude death rate is the annual number of deaths divided by the total population, expressed per 1,000 people.Find more statistics on other topics about the United States with key insights such as total fertility rate, life expectancy of men at birth, and infant mortality rate.

  3. c

    Number of Daily Deaths in U.S. (1950-2025)

    • consumershield.com
    csv
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Number of Daily Deaths in U.S. (1950-2025) [Dataset]. https://www.consumershield.com/articles/how-many-deaths-every-day-us
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The graph illustrates the number of deaths per day in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '24, while the y-axis indicates the daily number of deaths. Over this 75-year period, the number of deaths per day ranges from a low of 4,054 in 1950 to a high of 9,570 in 2021. Notable figures include 6,855 deaths in 2010 and 8,333 in 2024. The data shows a general upward trend in daily deaths over the decades, with recent years experiencing some fluctuations. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in daily deaths across the United States.

  4. c

    Number of Deaths per Year in U.S., 1950-2025

    • consumershield.com
    csv
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Number of Deaths per Year in U.S., 1950-2025 [Dataset]. https://www.consumershield.com/articles/deaths-per-year-us
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 14, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The graph displays the number of deaths per year in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '25, while the y-axis indicates the annual number of deaths. Over this 75-year period, the number of deaths ranges from a low of 1,479,684 in 1950 to a high of 3,492,879 in 2021. Notable figures include 2,430,923 deaths in 2001 and 3,090,000 projected deaths in 2024. The data exhibits a general upward trend in annual deaths over the decades, with significant increases in recent years. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in deaths across the United States.

  5. Average annual death toll from guns in the United States from 2012 to 2014,...

    • statista.com
    Updated Jul 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Average annual death toll from guns in the United States from 2012 to 2014, by race [Dataset]. https://www.statista.com/statistics/596008/us-gun-deaths-by-race/
    Explore at:
    Dataset updated
    Jul 13, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2012 - 2014
    Area covered
    United States
    Description

    This statistic shows the number of gun deaths in the United States annually as an average from the years 2012 to 2014, by race. On average, there were 22,079 white victims of gun deaths compared to 7,765 black victims.

  6. Data from: Annual PM2.5 and cardiovascular mortality rate data: Trends...

    • catalog.data.gov
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Annual PM2.5 and cardiovascular mortality rate data: Trends modified by county socioeconomic status in 2,132 US counties [Dataset]. https://catalog.data.gov/dataset/annual-pm2-5-and-cardiovascular-mortality-rate-data-trends-modified-by-county-socioeconomi
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    United States
    Description

    Data on county socioeconomic status for 2,132 US counties and each county’s average annual cardiovascular mortality rate (CMR) and total PM2.5 concentration for 21 years (1990-2010). County CMR, PM2.5, and socioeconomic data were obtained from the U.S. National Center for Health Statistics, U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system, and the U.S. Census, respectively. A socioeconomic index was created using seven county-level measures from the 1990 US census using factor analysis. Quintiles of this index were used to generate categories of county socioeconomic status. This dataset is associated with the following publication: Wyatt, L., G. Peterson, T. Wade, L. Neas, and A. Rappold. The contribution of improved air quality to reduced cardiovascular mortality: Declines in socioeconomic differences over time. ENVIRONMENT INTERNATIONAL. Elsevier B.V., Amsterdam, NETHERLANDS, 136: 105430, (2020).

  7. Average annual death toll from guns in the United States from 2012 to 2014,...

    • statista.com
    Updated Jul 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Average annual death toll from guns in the United States from 2012 to 2014, by cause [Dataset]. https://www.statista.com/statistics/595959/us-gun-deaths-by-cause/
    Explore at:
    Dataset updated
    Jul 13, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2012 - 2014
    Area covered
    United States
    Description

    This statistic shows the number of gun deaths in the United States annually as an average from the years 2012 to 2014, by cause. Suicide was the largest cause of gun deaths in the United States. On average, ****** people in the United States took their own life using a firearm each year.

  8. Drug overdose death rates, by drug type, sex, age, race, and Hispanic...

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Drug overdose death rates, by drug type, sex, age, race, and Hispanic origin: United States [Dataset]. https://catalog.data.gov/dataset/drug-overdose-death-rates-by-drug-type-sex-age-race-and-hispanic-origin-united-states-3f72f
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Data on drug overdose death rates, by drug type and selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System, numerator data from annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics.2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.

  9. Death rates for all causes in the U.S. 1950-2023

    • statista.com
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death rates for all causes in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/189670/death-rates-for-all-causes-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.

  10. F

    Premature Death Rate for San Francisco County, CA

    • fred.stlouisfed.org
    json
    Updated Jun 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Premature Death Rate for San Francisco County, CA [Dataset]. https://fred.stlouisfed.org/series/CDC20N2U006075
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 2, 2022
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    San Francisco, California
    Description

    Graph and download economic data for Premature Death Rate for San Francisco County, CA (CDC20N2U006075) from 1999 to 2020 about San Francisco County/City, CA; San Francisco; premature; death; CA; rate; and USA.

  11. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(164006), csv(200270), csv(2026589), csv(5401561), csv(463460), csv(5034), csv(16301), csv(4689434), csv(419332), csv(364098), zipAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  12. Death rate by age and sex in the U.S. 2021

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Death rate by age and sex in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.

  13. DQS Infant mortality rates, by race and Hispanic origin of mother, state,...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2024). DQS Infant mortality rates, by race and Hispanic origin of mother, state, and territory: United States and U.S. dependent areas (Archived) [Dataset]. https://healthdata.gov/dataset/DQS-Infant-mortality-rates-by-race-and-Hispanic-or/c2dy-yzu7
    Explore at:
    application/rdfxml, csv, xml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    data.cdc.gov
    Area covered
    United States
    Description

    This topic is no longer available in the NCHS Data Query System (DQS). Search, visualize, and download other estimates from over 120 health topics with DQS, available from: https://www.cdc.gov/nchs/dataquery/index.htm. Data on on average annual infant mortality rates in the United States and U.S. dependent areas, by race and Hispanic origin of mother, state, and territory. Data are from Health, United States. SOURCE: National Center for Health Statistics, National Vital Statistics System, Linked Birth/Infant Death Data Set.

  14. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(28125832), csv(60517511), csv(75015194), csv(60201673), csv(60676655), csv(74351424), csv(52019564), csv(60023260), csv(74689382), csv(51592721), csv(73906266), csv(15127221), csv(1128641), csv(5095), csv(11738570), zip, csv(74043128), csv(24235858), csv(74497014), csv(21575405)Available download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  15. c

    Number of Flu Deaths in U.S. Each Year (2010-2024*)

    • consumershield.com
    csv
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Number of Flu Deaths in U.S. Each Year (2010-2024*) [Dataset]. https://www.consumershield.com/articles/flu-deaths-each-year
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States of America
    Description

    The graph illustrates the number of flu-related deaths in the United States for each flu season from 2010-2011 to 2023-2024*. The x-axis represents the flu seasons, labeled from '10-11 to '23*-24*, while the y-axis shows the annual number of flu deaths. Throughout this period, flu deaths vary significantly, ranging from a low of 4,900 in the 2021-2022* season to a high of 51,000 in both the 2014-2015 and 2017-2018 seasons. Other notable figures include 36,000 deaths in 2010-2011, 42,000 in 2012-2013, and a recent increase to 28,000 in the 2023*-2024* season. The data exhibits considerable fluctuations with no consistent upward or downward trend, highlighting the variability in flu mortality rates over the years. This information is presented in a line graph format, effectively showcasing the yearly changes and peaks in flu-related deaths across the United States.

    *Data for the 2021-2022 and 2022-2023 seasons are estimated.

  16. d

    Replication Data for: Two years of Covid-19 pandemic : A higher prevalence...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Errasfa, Mourad (2023). Replication Data for: Two years of Covid-19 pandemic : A higher prevalence of the disease was associated with higher geographic latitudes, lower temperatures, and unfavorable epidemiologic and demographic conditions. [Dataset]. http://doi.org/10.7910/DVN/JYYZEI
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Errasfa, Mourad
    Description

    ABSTRACT Background : The Covid-19 pandemic associated with the SARS-CoV-2 has caused very high death tolls in many countries, while it has had less prevalence in other countries of Africa and Asia. Climate and geographic conditions, as well as other epidemiologic and demographic conditions, were a matter of debate on whether or not they could have an effect on the prevalence of Covid-19. Objective : In the present work, we sought a possible relevance of the geographic location of a given country on its Covid-19 prevalence. On the other hand, we sought a possible relation between the history of epidemiologic and demographic conditions of the populations and the prevalence of Covid-19 across four continents (America, Europe, Africa, and Asia). We also searched for a possible impact of pre-pandemic alcohol consumption in each country on the two year death tolls across the four continents. Methods : We have sought the death toll caused by Covid-19 in 39 countries and obtained the registered deaths from specialized web pages. For every country in the study, we have analysed the correlation of the Covid-19 death numbers with its geographic latitude, and its associated climate conditions, such as the mean annual temperature, the average annual sunshine hours, and the average annual UV index. We also analyzed the correlation of the Covid-19 death numbers with epidemiologic conditions such as cancer score and Alzheimer score, and with demographic parameters such as birth rate, mortality rate, fertility rate, and the percentage of people aged 65 and above. In regard to consumption habits, we searched for a possible relation between alcohol intake levels per capita and the Covid-19 death numbers in each country. Correlation factors and determination factors, as well as analyses by simple linear regression and polynomial regression, were calculated or obtained by Microsoft Exell software (2016). Results : In the present study, higher numbers of deaths related to Covid-19 pandemic were registered in many countries in Europe and America compared to other countries in Africa and Asia. The analysis by polynomial regression generated an inverted bell-shaped curve and a significant correlation between the Covid-19 death numbers and the geographic latitude of each country in our study. Higher death numbers were registered in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line. In a bell shaped curve, the latitude levels were negatively correlated to the average annual levels (last 10 years) of temperatures, sunshine hours, and UV index of each country, with the highest scores of each climate parameter being registered around the equator line, while lower levels of temperature, sunshine hours, and UV index were registered in higher latitude countries. In addition, the linear regression analysis showed that the Covid-19 death numbers registered in the 39 countries of our study were negatively correlated with the three climate factors of our study, with the temperature as the main negatively correlated factor with Covid-19 deaths. On the other hand, cancer and Alzheimer's disease scores, as well as advanced age and alcohol intake, were positively correlated to Covid-19 deaths, and inverted bell-shaped curves were obtained when expressing the above parameters against a country’s latitude. Instead, the (birth rate/mortality rate) ratio and fertility rate were negatively correlated to Covid-19 deaths, and their values gave bell-shaped curves when expressed against a country’s latitude. Conclusion : The results of the present study prove that the climate parameters and history of epidemiologic and demographic conditions as well as nutrition habits are very correlated with Covid-19 prevalence. The results of the present study prove that low levels of temperature, sunshine hours, and UV index, as well as negative epidemiologic and demographic conditions and high scores of alcohol intake may worsen Covid-19 prevalence in many countries of the northern hemisphere, and this phenomenon could explain their high Covid-19 death tolls. Keywords : Covid-19, Coronavirus, SARS-CoV-2, climate, temperature, sunshine hours, UV index, cancer, Alzheimer disease, alcohol.

  17. County Cancer Death Rates

    • kaggle.com
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    County Cancer Death Rates

    County-level cancer death rates with related variables

    By Noah Rippner [source]

    About this dataset

    This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

    Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

    The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

    To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

    Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

    It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

    Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

    Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

    How to use the dataset

    • Familiarize Yourself with the Columns:

      • County: The name of the county.
      • FIPS: The Federal Information Processing Standards code for the county.
      • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
      • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
      • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
      • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
      • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
      • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
    • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

    • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

    • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

    • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

    • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

  18. c

    Tornado fatalities in U.S, 2008–2024

    • consumershield.com
    csv
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Tornado fatalities in U.S, 2008–2024 [Dataset]. https://www.consumershield.com/articles/tornado-fatalities-by-year
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The graph illustrates the number of tornado-related fatalities in the United States from 2008 to 2024. The x-axis represents the years, abbreviated from ’08 to ’24, while the y-axis shows the number of deaths each year. Fatalities range from a low of 10 in 2018 to a peak of 553 in 2011. Most years have fatalities between 18 and 126, with notable exceptions in 2020 (76 deaths), 2021 (101 deaths), and 2023 (83 deaths). The data is presented in a bar graph format, highlighting the significant spike in fatalities in 2011 and the overall variability in tornado-related deaths over the 16-year period.

  19. Cancer Mortality & Incidence Rates: (Country LVL)

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer Mortality & Incidence Rates: (Country LVL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-level-cancer-mortality-and-incidence-r/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Cancer Mortality & Incidence Rates: (Country LVL)

    Investigating Cancer Trends over time

    By Data Exercises [source]

    About this dataset

    This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.

    This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.

    When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied

    Research Ideas

    • Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
    • This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
    • This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...

  20. COVID-19 deaths reported in the U.S. as of June 14, 2023, by age

    • statista.com
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 deaths reported in the U.S. as of June 14, 2023, by age [Dataset]. https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Jun 14, 2023
    Area covered
    United States
    Description

    Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). U.S. total number of fatalities 1990-2023 [Dataset]. https://www.statista.com/statistics/195920/number-of-deaths-in-the-united-states-since-1990/
Organization logo

U.S. total number of fatalities 1990-2023

Explore at:
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2023, about **** million deaths were reported in the United States. This figure is an increase from **** million deaths reported in 1990, and from **** in 2019. This sudden increase can be attributed to the COVID-19 pandemic.

Search
Clear search
Close search
Google apps
Main menu