https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Unit Characteristics: Number of People in CU by Highest Education: Less Than College Graduate: High School Graduate (CXU980010LB1404M) from 2012 to 2023 about no college, consumer unit, secondary schooling, secondary, education, persons, and USA.
The percentage of persons that have not completed, graduated, or received a high school diploma or GED. This is a standard indicator used to measure the portion of the population with less than a basic level of skills needed for the workplace. Persons under the age of 25 are not included in this analysis since many of these persons are still attending various levels of schooling.Source: American Community Survey Years Available: 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
According to a survey on people's wish to receive less refugees in Sweden from 2009 to 2019, people with a low education were the most critical towards this topic. In contrast, Swedes with a high education were the least critical concerning refugees in their country. However, since 2015, shares in both educational groups increased. In 2019, the share peaked at ** percent of high educated people and ** percent of low educated people wishing that Sweden would receive less refugees.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Unit Characteristics: Number of People in CU by Highest Education: Less Than College Graduate: High School Graduate with Some College (CXU980010LB1405M) from 2012 to 2023 about no college, consumer unit, secondary schooling, secondary, education, persons, and USA.
This data layer produced by the National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimates (EDGE) program provides a geographic locale framework that classifies all U.S. territory into twelve categories ranging from Large Cities to Remote Rural areas. NCES uses this framework to describe the type of geographic area where schools and school districts are located. The criteria for these classifications are defined by NCES and rely on standard geographic areas developed and maintained by the U.S. Census Bureau. The NCES Locale boundaries are based on geographic areas represented in Census TIGER/Line. For more information about the NCES locale framework, and to download the data, see: https://nces.ed.gov/programs/edge/Geographic/LocaleBoundaries. The classifications include:City - Large (11): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population of 250,000 or more.City - Midsize (12): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population less than 250,000 and greater than or equal to 100,000.City - Small (13): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population less than 100,000.Suburb – Large (21): Territory outside a Principal City and inside an Urban Area with population of 250,000 or more.Suburb - Midsize (22): Territory outside a Principal City and inside an Urban Area with population less than 250,000 and greater than or equal to 100,000.Suburb - Small (23): Territory outside a Principal City and inside an Urban Area with population less than 100,000. Town - Fringe (31): Territory inside an Urban Area with a population less than 50,000 that is less than or equal to 10 miles from an Urban Area with a population of 50,000 or more.Town - Distant (32): Territory inside an Urban Area with a population less than 50,000 that is more than 10 miles and less than or equal to 35 miles from an Urban Area with a population of 50,000 or more.Town - Remote (33): Territory inside an Urban Area with a population less than 50,000 that is more than 35 miles of an Urban Area with a population of 50,000 or more.Rural - Fringe (41): Census-defined rural territory that is less than or equal to 5 miles from an Urban Area of 50,000 or more, as well as rural territory that is less than or equal to 2.5 miles from an Urban Area with a population less than 50,000.Rural - Distant (42): Census-defined rural territory that is more than 5 miles but less than or equal to 25 miles from an Urban Area with a population of 50,000 or more, as well as rural territory that is more than 2.5 miles but less than or equal to 10 miles from an Urban Area with a population less than 50,000.Rural - Remote (43): Census-defined rural territory that is more than 25 miles from an Urban Area with a population of 50,000 or more and is also more than 10 miles from an Urban Area with a population less than 50,000.All information contained in this file is in the public _domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
At the start of the 2024–25 school year, ** percent of public schools felt understaffed in the United States. Public schools where students of color made up 75 percent or more of the student population were most likely to feel understaffed, at ** percent. In comparison, only ** percent of public schools with 25 percent or less of the student population consisting of students of color felt understaffed.
Overall attendance data include students in Districts 1-32 and 75 (Special Education). Students in District 79 (Alternative Schools & Programs), charter schools, home schooling, and home and hospital instruction are excluded. Pre-K data do not include NYC Early Education Centers or District Pre-K Centers; therefore, Pre-K data are limited to those who attend K-12 schools that offer Pre-K. Transfer schools are included in citywide, borough, and district counts but removed from school-level files. Attendance is attributed to the school the student attended at the time. If a student attends multiple schools in a school year, the student will contribute data towards multiple schools. Starting in 2020-21, the NYC DOE transitioned to NYSED's definition of chronic absenteeism. Students are considered chronically absent if they have an attendance of 90 percent or less (i.e. students who are absent 10 percent or more of the total days). In order to be included in chronic absenteeism calculations, students must be enrolled for at least 10 days (regardless of whether present or absent) and must have been present for at least 1 day. The NYSED chronic absenteeism definition is applied to all prior years in the report. School-level chronic absenteeism data reflect chronic absenteeism at a particular school. In order to eliminate double-counting students in chronic absenteeism counts, calculations at the district, borough, and citywide levels include all attendance data that contribute to the given geographic category. For example, if a student was chronically absent at one school but not at another, the student would only be counted once in the citywide calculation. For this reason, chronic absenteeism counts will not align across files. All demographic data are based on a student's most recent record in a given year. Students With Disabilities (SWD) data do not include Pre-K students since Pre-K students are screened for IEPs only at the parents' request. English language learner (ELL) data do not include Pre-K students since the New York State Education Department only begins administering assessments to be identified as an ELL in Kindergarten. Only grades PK-12 are shown, but calculations for "All Grades" also include students missing a grade level, so PK-12 may not add up to "All Grades". Data include students missing a gender, but are not shown due to small cell counts. Data for Asian students include Native Hawaiian or Other Pacific Islanders . Multi-racial and Native American students, as well as students missing ethnicity/race data are included in the "Other" ethnicity category. In order to comply with the Family Educational Rights and Privacy Act (FERPA) regulations on public reporting of education outcomes, rows with five or fewer students are suppressed, and have been replaced with an "s". Using total days of attendance as a proxy , rows with 900 or fewer total days are suppressed. In addition, other rows have been replaced with an "s" when they could reveal, through addition or subtraction, the underlying numbers that have been redacted. Chronic absenteeism values are suppressed, regardless of total days, if the number of students who contribute at least 20 days is five or fewer. Due to the COVID-19 pandemic and resulting shift to remote learning in March 2020, 2019-20 attendance data was only available for September 2019 through March 13, 2020. Interactions data from the spring of 2020 are reported on a separate tab. Interactions were reported by schools during remote learning, from April 6 2020 through June 26 2020 (a total of 57 instructional days, excluding special professional development days of June 4 and June 9). Schools were required to indicate any student from their roster that did not have an interaction on a given day. Schools were able to define interactions in a way that made sense for their students and families. Definitions of an interaction included: • Student submission of an assignment or completion of an assessment, in whichever manner the school is collecting • Student participation in an online forum, chat log, or discussion thread • Student/family phone call, email or response to teacher email • Phone, email, and/or other digital communication with a family member which confirms student interaction/engagement • Other evidence of participation as determined by the principal. Interactions data are attributed to students' school of record on a given day. A student participating in a Shared Instruction (SHIN) model may have recorded interactions at multiple schools on a given day, but only one record is counted for the interaction rate, attributed to students' school of record for that day. Due to the shift to hybrid learning, attendance data for the 2020-21 school year include both in-person and remote instruction. Total days, days absent, and days present fields include both in-person and remote attendance. More information on attendance policies can be found here: https://www.schools.nyc.gov/school-life/rules-for-students/attendance
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Global Share of Population Having at Least Completed Primary Education by Country, 2023 Discover more data with ReportLinker!
As of 2023, based on data dating back to 2021, Angola was the country worldwide where the lowest share of the population had a higher education of a bachelor's degree or higher. A high number of the countries on the list were located in Sub-Saharan Africa. On the other hand, Montenegro was the country where the highest share of the population had completed a bachelor's degree or more.
The 2021-2022 School Learning Modalities dataset provides weekly estimates of school learning modality (including in-person, remote, or hybrid learning) for U.S. K-12 public and independent charter school districts for the 2021-2022 school year and the Fall 2022 semester, from August 2021 – December 2022. These data were modeled using multiple sources of input data (see below) to infer the most likely learning modality of a school district for a given week. These data should be considered district-level estimates and may not always reflect true learning modality, particularly for districts in which data are unavailable. If a district reports multiple modality types within the same week, the modality offered for the majority of those days is reflected in the weekly estimate. All school district metadata are sourced from the National Center for Educational Statistics (NCES) for 2020-2021. School learning modality types are defined as follows: In-Person: All schools within the district offer face-to-face instruction 5 days per week to all students at all available grade levels. Remote: Schools within the district do not offer face-to-face instruction; all learning is conducted online/remotely to all students at all available grade levels. Hybrid: Schools within the district offer a combination of in-person and remote learning; face-to-face instruction is offered less than 5 days per week, or only to a subset of students. Data Information School learning modality data provided here are model estimates using combined input data and are not guaranteed to be 100% accurate. This learning modality dataset was generated by combining data from four different sources: Burbio [1], MCH Strategic Data [2], the AEI/Return to Learn Tracker [3], and state dashboards [4-20]. These data were combined using a Hidden Markov model which infers the sequence of learning modalities (In-Person, Hybrid, or Remote) for each district that is most likely to produce the modalities reported by these sources. This model was trained using data from the 2020-2021 school year. Metadata describing the _location, number of schools and number of students in each district comes from NCES [21]. You can read more about the model in the CDC MMWR: COVID-19–Related School Closures and Learning Modality Changes — United States, August 1–September 17, 2021. The metrics listed for each school learning modality reflect totals by district and the number of enrolled students per district for which data are available. School districts represented here exclude private schools and include the following NCES subtypes: Public school district that is NOT a component of a supervisory union Public school district that is a component of a supervisory union Independent charter district “BI” in the state column refers to school districts funded by the Bureau of Indian Education. Technical Notes Data from August 1, 2021 to June 24, 2022 correspond to the 2021-2022 school year. During this time frame, data from the AEI/Return to Learn Tracker and most state dashboards were not available. Inferred modalities with a probability below 0.6 were deemed inconclusive and were omitted. During the Fall 2022 semester, modalities for districts with a school closure reported by Burbio were updated to either “Remote”, if the closure spanned the entire week, or “Hybrid”, if the closure spanned 1-4 days of the week. Data from August
In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.
This map shows the percentage of people age 25+ with less than a high school degree. This is shown by state, county, and census tracts throughout the US. Zoom to any city to see the pattern there, or use one of the bookmarks to explore different areas. For more information about the education attainment breakdown from the US Census Bureau, click here.The pop-up is configured to show the overall breakdown of educational attainment for the population 25+. The data shown is current-year American Community Survey (ACS) data from the US Census Bureau. The data is updated each year when the ACS releases its new 5-year estimates. For more information about the data, visit this page.To learn more about when the ACS releases data updates, click here.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The 2006 Census enumerated 13 012 475 adults aged 15 and over whose highest level of educational attainment was a trades certificate or diploma; a college, CEGEP or non-university certificate or diploma; or a university certificate, diploma or degree in 2006. This was an increase of 32% from 9 864 970 in 2001. In 2006, 23% of Canadians aged 15 and over had completed a university certificate, diploma or degree, 17% had completed a college, CEGEP or non-university certificate or diploma and 11% had completed a trades certificate or diploma. The proportion of the population aged 15 and over with a high school diploma or equivalent as their highest credential was 26% and those with less than a high school diploma or equivalent was 24%.
There were approximately 18.58 million college students in the U.S. in 2022, with around 13.49 million enrolled in public colleges and a further 5.09 million students enrolled in private colleges. The figures are projected to remain relatively constant over the next few years.
What is the most expensive college in the U.S.? The overall number of higher education institutions in the U.S. totals around 4,000, and California is the state with the most. One important factor that students – and their parents – must consider before choosing a college is cost. With annual expenses totaling almost 78,000 U.S. dollars, Harvey Mudd College in California was the most expensive college for the 2021-2022 academic year. There are three major costs of college: tuition, room, and board. The difference in on-campus and off-campus accommodation costs is often negligible, but they can change greatly depending on the college town.
The differences between public and private colleges Public colleges, also called state colleges, are mostly funded by state governments. Private colleges, on the other hand, are not funded by the government but by private donors and endowments. Typically, private institutions are much more expensive. Public colleges tend to offer different tuition fees for students based on whether they live in-state or out-of-state, while private colleges have the same tuition cost for every student.
In 2022, around 91.8 percent of women had graduated high school or had obtained a higher educational degree in the United States. This is an increase from 1960, when 42.5 percent of women in the U.S. had graduated from high school or above.
Abstract Aims: 1) to identify the prevalence of active commuting to school (ACS) among Brazilian regions; and 2) to determine associated factors related to ACS in this population. Methods: Cross-sectional study comprising 16,493 adolescents (mean age 14.09±2.12 years). The data comes from the National School Health Survey (2015), and the information was collected by a self-reported questionnaire. Logistic regression models were performed to identify correlates of ACS. Results: Adolescents who live in the Southeast are more prone to have ACS compared to those who live in other regions. Do not have motor vehicles been positively associated with ACS [girls: 2.04 (1.72;2.42); boys 1.85(1.63;2.10)]. Those whom self-reported white was less prone to have ACS compared to their peers from other ethnicities. Those enrolled in private schools [girls: 0.43(0.34;0.54); boys (0.45(0.39;0.53)] and schools setting in rural area [girls: 0.38(0.25;0.57); boys: 0.51(0.37;71)] are less prone to show ACS. In addition, adolescents who accumulated less active time during physical education classes [girls: 0.80(0.66;0.97)] and extracurricular shifts [boys: 0.69(0.60;0.80)] were less prone to have an ACS, compared to their most active peers. Lastly, girls who spent ≤ 2 hours presented fewer odds to have an ACS [0.75(0.63;0.90)]. Conclusions: ACS was most prevalent among those who live in the Southeast region and seems to be negativity associated with the socioeconomic level. Moreover, less active adolescents during both school and leisure time may be more prone to have passive travel go/from school.
The 2020-2021 School Learning Modalities dataset provides weekly estimates of school learning modality (including in-person, remote, or hybrid learning) for U.S. K-12 public and independent charter school districts for the 2020-2021 school year, from August 2020 – June 2021. These data were modeled using multiple sources of input data (see below) to infer the most likely learning modality of a school district for a given week. These data should be considered district-level estimates and may not always reflect true learning modality, particularly for districts in which data are unavailable. If a district reports multiple modality types within the same week, the modality offered for the majority of those days is reflected in the weekly estimate. All school district metadata are sourced from the National Center for Educational Statistics (NCES) for 2020-2021. School learning modality types are defined as follows: In-Person: All schools within the district offer face-to-face instruction 5 days per week to all students at all available grade levels. Remote: Schools within the district do not offer face-to-face instruction; all learning is conducted online/remotely to all students at all available grade levels. Hybrid: Schools within the district offer a combination of in-person and remote learning; face-to-face instruction is offered less than 5 days per week, or only to a subset of students. Data Information School learning modality data provided here are model estimates using combined input data and are not guaranteed to be 100% accurate. This learning modality dataset was generated by combining data from four different sources: Burbio [1], MCH Strategic Data [2], the AEI/Return to Learn Tracker [3], and state dashboards [4-20]. These data were combined using a Hidden Markov model which infers the sequence of learning modalities (In-Person, Hybrid, or Remote) for each district that is most likely to produce the modalities reported by these sources. This model was trained using data from the 2020-2021 school year. Metadata describing the _location, number of schools and number of students in each district comes from NCES [21]. You can read more about the model in the CDC MMWR: COVID-19–Related School Closures and Learning Modality Changes — United States, August 1–September 17, 2021. The metrics listed for each school learning modality reflect totals by district and the number of enrolled students per district for which data are available. School districts represented here exclude private schools and include the following NCES subtypes: Public school district that is NOT a component of a supervisory union Public school district that is a component of a supervisory union Independent charter district “BI” in the state column refers to school districts funded by the Bureau of Indian Education. Technical Notes Data from September 1, 2020 to June 25, 2021 correspond to the 2020-2021 school year. During this timeframe, all four sources of data were available. Inferred modalities with a probability below 0.75 were deemed inconclusive and were omitted. Data for the month of July may show “In Person” status although most school districts are effectively closed during this time for summer break. Users may wish to exclude July data from use for this reason where applicable. Sources K-12 School Opening Tracker. Burbio 2021; https
The spotlight is based on data from the National Survey on Drug Use and Health's (NSDUH's) Mental Health Surveillance Study (MHSS). It discusses people with one or more anxiety disorders by their education level.
Montenegro was the country where the highest cumulative share of the population above 25 years had completed at least a bachelor's degree. 61.1 percent of the population in the country had some form of higher education as of 2022. The United Arab Emirates followed behind with 51.1 percent.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Unit Characteristics: Number of People in CU by Highest Education: Less Than College Graduate: High School Graduate (CXU980010LB1404M) from 2012 to 2023 about no college, consumer unit, secondary schooling, secondary, education, persons, and USA.