This spreadsheet contains information reported by over 200 investor-owned utilities to the Federal Energy Regulatory Commission in the annual filing FERC Form 1 for the years 1994-2019. It contains 1) annual capital costs for new transmission, distribution, and administrative infrastructure; 2) annual operation and maintenance costs for transmission, distribution, and utility business administration; 3) total annual MWh sales and sales by customer class; 4) annual peak demand in MW; and 5) total customer count and the number of customers by class. Annual spending on new capital infrastructure is read from pages 204 to 207 of FERC Form 1, titled Electric Plant in Service. Annual transmission capital additions are recorded from Line 58, Column C - Total Transmission Plant Additions. Likewise, annual distribution capital additions are recorded from Line 75, Column C - Total Distribution Plant Additions. Administrative capital additions are recorded from Line 5, Column C - Total Intangible Plant Additions, and Line 99, Column C - Total General Plant Additions. Operation and maintenance costs associated with transmission, distribution, and utility administration are read from pages 320 to 323 of FERC Form 1, titled Electric Operation and Maintenance Expenses. Annual transmission operation and maintenance are recorded from Line 99, Column B - Total Transmission Operation Expenses for Current Year, and Line 111, Column B - Total Transmission Maintenance Expenses for Current Year. Likewise, annual distribution operation and maintenance costs are recorded from Line 144, Column B - Total Distribution Operation Expenses, and Line 155, Column B - Total Distribution Maintenance Expenses. Administrative operation and maintenance costs are recorded from: Line 164, Column B - Total Customers Accounts Expenses; Line 171, Column B - Total Customer Service and Information Expenses; Line 178, Column B - Total Sales Expenses; and Line 197, Column B - Total Administrative and General Expenses. The annual peak demand in MW over the year is read from page 401, titled Monthly Peaks and Output. The monthly peak demand is listed in Lines 29 to 40, Column D. The maximum of these monthly reports during each year is taken as the annual peak demand in MW. The annual energy sales and customer count data come from page 300, Electric Operating Revenues. The values are provided in Line 2 - Residential Sales, Line 4 - Commercial Sales, Line 5 - Industrial Sales, and Line 10 - Total Sales to Ultimate Consumers. More information about the database is available in an associated report published by the University of Texas at Austin Energy Institute: https://live-energy-institute.pantheonsite.io/sites/default/files/UTAustin_FCe_TDA_2016.pdf Also see an associated paper published in the journal Energy Policy: Fares, Robert L., and Carey W. King. "Trends in transmission, distribution, and administration costs for US investor-owned electric utilities." Energy Policy 105 (2017): 354-362. https://doi.org/10.1016/j.enpol.2017.02.036 All data come from the Federal Energy Regulatory Commission FERC Form 1 Database available in Microsoft Visual FoxPro Format: https://www.ferc.gov/docs-filing/forms/form-1/data.asp
The Department of Energy's Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells - increasing or decreasing the fluid flow rates across the wells - and drilling new wells at appropriate locations. The latter is expensive, time-consuming, and subject to many engineering constraints, but the former is a viable mechanism for periodic adjustment of the available fluid allocations. Data and supporting literature from a study describing a new approach combining reservoir modeling and machine learning to produce models that enable strategies for the mitigation of decreased heat and power production rates over time for geothermal power plants. The computational approach used enables translation of sets of potential flow rates for the active wells into reservoir-wide estimates of produced energy and discovery of optimal flow allocations among the studied sets. In our computational experiments, we utilize collections of simulations for a specific reservoir (which capture subsurface characterization and realize history matching) along with machine learning models that predict temperature and pressure timeseries for production wells. We evaluate this approach using an "open-source" reservoir we have constructed that captures many of the characteristics of Brady Hot Springs, a commercially operational geothermal field in Nevada, USA. Selected results from a reservoir model of Brady Hot Springs itself are presented to show successful application to an existing system. In both cases, energy predictions prove to be highly accurate: all observed prediction errors do not exceed 3.68% for temperatures and 4.75% for pressures. In a cumulative energy estimation, we observe prediction errors that are less than 4.04%. A typical reservoir simulation for Brady Hot Springs completes in approximately 4 hours, whereas our machine learning models yield accurate 20-year predictions for temperatures, pressures, and produced energy in 0.9 seconds. This paper aims to demonstrate how the models and techniques from our study can be applied to achieve rapid exploration of controlled parameters and optimization of other geothermal reservoirs. Includes a synthetic, yet realistic, model of a geothermal reservoir, referred to as open-source reservoir (OSR). OSR is a 10-well (4 injection wells and 6 production wells) system that resembles Brady Hot Springs (a commercially operational geothermal field in Nevada, USA) at a high level but has a number of sufficiently modified characteristics (which renders any possible similarity between specific characteristics like temperatures and pressures as purely random). We study OSR through CMG simulations with a wide range of flow allocation scenarios. Includes a dataset with 101 simulated scenarios that cover the period of time between 2020 and 2040 and a link to the published paper about this project, where we focus on the Machine Learning work for predicting OSR's energy production based on the simulation data, as well as a link to the GitHub repository where we have published the code we have developed (please refer to the repository's readme file to see instructions on how to run the code). Additional links are included to associated work led by the USGS to identify geologic factors associated with well productivity in geothermal fields. Below are the high-level steps for applying the same modeling + ML process to other geothermal reservoirs: 1. Develop a geologic model of the geothermal field. The location of faults, upflow zones, aquifers, etc. need to be accounted for as accurately as possible 2. The geologic model needs to be converted to a reservoir model that can be used in a reservoir simulator, such as, for instance, CMG STARS, TETRAD, or FALCON 3. Using native state modeling, the initial temperature and pressure distributions are evaluated, and they become the initial conditions for dynamic reservoir simulations 4....
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This spreadsheet contains information reported by over 200 investor-owned utilities to the Federal Energy Regulatory Commission in the annual filing FERC Form 1 for the years 1994-2019. It contains 1) annual capital costs for new transmission, distribution, and administrative infrastructure; 2) annual operation and maintenance costs for transmission, distribution, and utility business administration; 3) total annual MWh sales and sales by customer class; 4) annual peak demand in MW; and 5) total customer count and the number of customers by class. Annual spending on new capital infrastructure is read from pages 204 to 207 of FERC Form 1, titled Electric Plant in Service. Annual transmission capital additions are recorded from Line 58, Column C - Total Transmission Plant Additions. Likewise, annual distribution capital additions are recorded from Line 75, Column C - Total Distribution Plant Additions. Administrative capital additions are recorded from Line 5, Column C - Total Intangible Plant Additions, and Line 99, Column C - Total General Plant Additions. Operation and maintenance costs associated with transmission, distribution, and utility administration are read from pages 320 to 323 of FERC Form 1, titled Electric Operation and Maintenance Expenses. Annual transmission operation and maintenance are recorded from Line 99, Column B - Total Transmission Operation Expenses for Current Year, and Line 111, Column B - Total Transmission Maintenance Expenses for Current Year. Likewise, annual distribution operation and maintenance costs are recorded from Line 144, Column B - Total Distribution Operation Expenses, and Line 155, Column B - Total Distribution Maintenance Expenses. Administrative operation and maintenance costs are recorded from: Line 164, Column B - Total Customers Accounts Expenses; Line 171, Column B - Total Customer Service and Information Expenses; Line 178, Column B - Total Sales Expenses; and Line 197, Column B - Total Administrative and General Expenses. The annual peak demand in MW over the year is read from page 401, titled Monthly Peaks and Output. The monthly peak demand is listed in Lines 29 to 40, Column D. The maximum of these monthly reports during each year is taken as the annual peak demand in MW. The annual energy sales and customer count data come from page 300, Electric Operating Revenues. The values are provided in Line 2 - Residential Sales, Line 4 - Commercial Sales, Line 5 - Industrial Sales, and Line 10 - Total Sales to Ultimate Consumers. More information about the database is available in an associated report published by the University of Texas at Austin Energy Institute: https://live-energy-institute.pantheonsite.io/sites/default/files/UTAustin_FCe_TDA_2016.pdf Also see an associated paper published in the journal Energy Policy: Fares, Robert L., and Carey W. King. "Trends in transmission, distribution, and administration costs for US investor-owned electric utilities." Energy Policy 105 (2017): 354-362. https://doi.org/10.1016/j.enpol.2017.02.036 All data come from the Federal Energy Regulatory Commission FERC Form 1 Database available in Microsoft Visual FoxPro Format: https://www.ferc.gov/docs-filing/forms/form-1/data.asp