The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data for the top 10 scorers in the NBA from the years 2000-2024. Scraped using nba_api.
leaders.csv - - General season statistics for each season's top 10 scorers
shotsXXXXs.csv - - Shot details for every made shot from each season's top 10 scorers
shots2000s.csv - - Data from 2000-01 season through 2009-10 season
shots2010s.csv - - Data from 2010-11 season through 2019-20 season
shots2020s.csv - - Data from 2020-21 season through 2023-24 season
This statistic shows the results of a survey conducted in the United States from October to November 2024. U.S. consumers were asked what their New Year's resolutions are. During the survey, 52 percent of the respondents who make New Year's resolutions said that one them is to save more money, making it the most popular New Year's resolution for 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
I’ve compiled a list of the latest social media user statistics showing just how big social media has become and where it’s likely to go in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reading and writing are crucial life skills but roughly 1 in 10 children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Our genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls identified 42 independent significant loci: 15 in genes linked to cognitive ability/educational attainment; 27 novel and potentially more specific to dyslexia. Twenty-three loci (13 novel) were validated in independent cohorts of Chinese and European ancestry. Genetic aetiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These TikTok user statistics tell the whole story of the new social media giant and give you some insights into the app's future.
Data files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
Tables VEH0101 and VEH1104 have not yet been revised to include the recent changes to Large Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV) definitions for data earlier than 2023 quarter 4. This will be amended as soon as possible.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/689a1dddad0cbc0e27643253/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 154 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/6846e8dcd25e6f6afd4c01d5/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 33 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/689a1dde9c63e0ee87656a9c/veh0105.ods">Licensed vehicles at the end of the quarter by body type, fuel type, keepership (private and company) and upper and lower tier local authority: Great Britain and United Kingdom (ODS, 16 MB)
VEH0206: https://assets.publishing.service.gov.uk/media/6846e8dee5a089417c806179/veh0206.ods">Licensed cars at the end of the year by VED band and carbon dioxide (CO2) emissions: Great Britain and United Kingdom (ODS, 42.3 KB)
VEH0601: https://assets.publishing.service.gov.uk/media/6846e8df5e92539572806176/veh0601.ods">Licensed buses and coaches at the end of the year by body type detail: Great Britain and United Kingdom (ODS, 24.6 KB)
VEH1102: https://assets.publishing.service.gov.uk/media/6846e8e0e5a089417c80617b/veh1102.ods">Licensed vehicles at the end of the year by body type and keepership (private and company): Great Britain and United Kingdom (ODS, 146 KB)
VEH1103: https://assets.publishing.service.gov.uk/media/689a1de1e7be62b4f0643252/veh1103.ods">Licensed vehicles at the end of the quarter by body type and fuel type: Great Britain and United Kingdom (ODS, 1010 KB)
VEH1104: https://assets.publishing.service.gov.uk/media/689a1de1e7be62b4f0643253/veh1104.ods">Licensed vehicles at the end of the
Local authorities compiling this data or other interested parties may wish to see notes and definitions for house building which includes P2 full guidance notes.
Data from live tables 253 and 253a is also published as http://opendatacommunities.org/def/concept/folders/themes/house-building" class="govuk-link">Open Data (linked data format).
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">26.7 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">113 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
This publication summarises the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN). This release covers annual average concentrations in the UK of:
The release also covers the number of days when air pollution was ‘Moderate’ or higher for any one of five pollutants listed below:
These statistics are used to monitor progress against the UK’s reduction targets for concentrations of air pollutants. Improvements in air quality help reduce harm to human health and the environment.
Air quality in the UK is strongly linked to anthropogenic emissions of pollutants. For more information on UK emissions data and other information please refer to the air quality and emissions statistics GOV.UK page.
The statistics in this publication are based on data from the Automatic Urban and Rural Network (AURN) of air quality monitors. The https://uk-air.defra.gov.uk/" class="govuk-link">UK-AIR website contains the latest air quality monitoring data for the UK and detailed information about the different monintoring networks that measure air quality. The website also hosts the latest data produced using Pollution Climate Mapping (PCM) which is a suite of models that uses both monitoring and emissions data to model concentrations of air pollutants across the whole of the UK. The UK-AIR website also provides air pollution episode updates and information on Local Authority Air Quality Management Areas as well as a number of useful reports.
The monitoring data is continuously reviewed and subject to change when issues are highlighted. This means that the time series for certain statistics may vary slightly from year to year. You can access editions of this publication via The National Archives or the links below.
The datasets associated with this publication can be found here ENV02 - Air quality statistics.
As part of our ongoing commitment to compliance with the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Official Statistics we wish to strengthen our engagement with users of air quality data and better understand how the data is used and the types of decisions that they inform. We invite users to https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">register as a “user of Air Quality data”, so that we can retain your details, inform you of any new releases of Air Quality statistics and provide you with the opportunity to take part in user engagement activities that we may run. If you would like to register as a user of Air Quality data, please provide your details in the attached https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">form.
https://webarchive.nationalarchives.gov.uk/ukgwa/20250609165125/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2023
https://webarchive.nationalarchives.gov.uk/ukgwa/20230802031254/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2022
https://webarchive.nationalarchives.gov.uk/ukgwa/20230301015627/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2021
https://webarchive.nationalarchives.gov.uk/ukgwa/20211111164715/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2020
https://webarchive.nationalarchives.gov.uk/20201225100256/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2019
<a rel="external" href="https://webarchive.nationalarchives.gov.uk/20200303
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). OSR sets the standards of trustworthiness, quality and value in the Code of Practice for Statistics that all producers of official statistics should adhere to. You are welcome to contact us directly by emailing transport.statistics@dft.gov.uk with any comments about how we meet these standards.
These statistics on transport use are published monthly.
For each day, the Department for Transport (DfT) produces statistics on domestic transport:
The associated methodology notes set out information on the data sources and methodology used to generate these headline measures.
From September 2023, these statistics include a second rail usage time series which excludes Elizabeth Line service (and other relevant services that have been replaced by the Elizabeth line) from both the travel week and its equivalent baseline week in 2019. This allows for a more meaningful like-for-like comparison of rail demand across the period because the effects of the Elizabeth Line on rail demand are removed. More information can be found in the methodology document.
The table below provides the reference of regular statistics collections published by DfT on these topics, with their last and upcoming publication dates.
Mode | Publication and link | Latest period covered and next publication |
---|---|---|
Road traffic | Road traffic statistics | Full annual data up to December 2024 was published in June 2025. Quarterly data up to March 2025 was published June 2025. |
Rail usage | The Office of Rail and Road (ORR) publishes a range of statistics including passenger and freight rail performance and usage. Statistics are available at the https://dataportal.orr.gov.uk/" class="govuk-link">ORR website. Statistics for rail passenger numbers and crowding on weekdays in major cities in England and Wales are published by DfT. |
ORR’s latest quarterly rail usage statistics, covering January to March 2025, was published in June 2025. DfT’s most recent annual passenger numbers and crowding statistics for 2023 were published in September 2024. |
Bus usage | Bus statistics | The most recent annual publication covered the year ending March 2024. The most recent quarterly publication covered January to March 2025. |
TfL tube and bus usage | Data on buses is covered by the section above. https://tfl.gov.uk/status-updates/busiest-times-to-travel" class="govuk-link">Station level business data is available. | |
Cycling usage | Walking and cycling statistics, England | 2023 calendar year published in August 2024. |
Cross Modal and journey by purpose | National Travel Survey | 2023 calendar year data published in August 2024. |
https://data.gov.tw/licensehttps://data.gov.tw/license
Compile statistical data on the top 10 trademark registration applications from the past year to the latest month for reference.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Great Valley town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Great Valley town. The dataset can be utilized to understand the population distribution of Great Valley town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Great Valley town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Great Valley town.
Key observations
Largest age group (population): Male # 5-9 years (96) | Female # 60-64 years (136). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Great Valley town Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here is a list of the top 10 subcategories for WordPress.
The statistic shows the cumulative revenues from the ten leading artificial intelligence (AI) use cases worldwide, between 2016 and 2025. Over the ten years between 2016 and 2025, AI software for vehicular object detection, identification, and avoidance is expected to generate * billion U.S. dollars.
https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy
Gesture Recognition Statistics: Gesture recognition is a subfield of computer vision and human-computer interaction that interprets human gestures using algorithms, with applications in gaming, virtual reality, robotics, and assistive devices.
Gestures are categorized into static and dynamic types, with recognition methods. Including vision-based techniques (2D and 3D) and sensor-based approaches utilizing wearable devices.
Challenges such as gesture variability, environmental factors, and the need for real-time processing must be addressed for effective recognition.
Further, this technology has diverse applications, from enhancing gaming experiences to facilitating smart home controls and improving human-robot interaction.
Future trends point toward improved AI algorithms, integration with other technologies, and increased use of wearable gesture recognition systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the key social media statistics that you need to know.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Bureau of Labor Statistics (BLS) is a unit of the United States Department of Labor. It is the principal fact-finding agency for the U.S. government in the broad field of labor economics and statistics and serves as a principal agency of the U.S. Federal Statistical System. The BLS is a governmental statistical agency that collects, processes, analyzes, and disseminates essential statistical data to the American public, the U.S. Congress, other Federal agencies, State and local governments, business, and labor representatives. Source: https://en.wikipedia.org/wiki/Bureau_of_Labor_Statistics
Bureau of Labor Statistics including CPI (inflation), employment, unemployment, and wage data.
Update Frequency: Monthly
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:bls
https://cloud.google.com/bigquery/public-data/bureau-of-labor-statistics
Dataset Source: http://www.bls.gov/data/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Clark Young from Unsplash.
What is the average annual inflation across all US Cities? What was the monthly unemployment rate (U3) in 2016? What are the top 10 hourly-waged types of work in Pittsburgh, PA for 2016?
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...
VetPop2023 top 10 states where Veterans reside in fiscal year 2024
https://www.lumina-intelligence.com/terms/https://www.lumina-intelligence.com/terms/
This dataset ranks the top 10 UK coffee shop, café, and dessert parlour brands based on forecasted outlet numbers as of December 2025. It provides a snapshot of market presence by brand and highlights the leading players in the out-of-home coffee and dessert sectors.
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.