Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset has three sentiments namely, negative, neutral, and positive. It contains two fields for the tweet and label.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
because of COVID-19
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data introduction • Twitter-tweets-sentiment dataset is a dataset that aims to analyze tweet sentiment for Twitter and natural language processing.
2) Data utilization (1)Twitter-tweets-sentiment data has characteristics that: • The data consists of three columns, including emotion and text, and aims to block negative tweets through a powerful classification model. (2) Twitter-tweets-sentiment data can be used to: • Social Media Monitoring: Businesses and organizations can use data to monitor social media platforms and gauge public sentiment about a brand, product, event, or social issue. • Sentiment analysis: This dataset can be used to train models that classify the sentiment of tweets, which can help companies and researchers understand public opinion on a variety of topics.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The following information can also be found at https://www.kaggle.com/davidwallach/financial-tweets. Out of curosity, I just cleaned the .csv files to perform a sentiment analysis. So both the .csv files in this dataset are created by me.
Anything you read in the description is written by David Wallach and using all this information, I happen to perform my first ever sentiment analysis.
"I have been interested in using public sentiment and journalism to gather sentiment profiles on publicly traded companies. I first developed a Python package (https://github.com/dwallach1/Stocker) that scrapes the web for articles written about companies, and then noticed the abundance of overlap with Twitter. I then developed a NodeJS project that I have been running on my RaspberryPi to monitor Twitter for all tweets coming from those mentioned in the content section. If one of them tweeted about a company in the stocks_cleaned.csv file, then it would write the tweet to the database. Currently, the file is only from earlier today, but after about a month or two, I plan to update the tweets.csv file (hopefully closer to 50,000 entries.
I am not quite sure how this dataset will be relevant, but I hope to use these tweets and try to generate some sense of public sentiment score."
This dataset has all the publicly traded companies (tickers and company names) that were used as input to fill the tweets.csv. The influencers whose tweets were monitored were: ['MarketWatch', 'business', 'YahooFinance', 'TechCrunch', 'WSJ', 'Forbes', 'FT', 'TheEconomist', 'nytimes', 'Reuters', 'GerberKawasaki', 'jimcramer', 'TheStreet', 'TheStalwart', 'TruthGundlach', 'Carl_C_Icahn', 'ReformedBroker', 'benbernanke', 'bespokeinvest', 'BespokeCrypto', 'stlouisfed', 'federalreserve', 'GoldmanSachs', 'ianbremmer', 'MorganStanley', 'AswathDamodaran', 'mcuban', 'muddywatersre', 'StockTwits', 'SeanaNSmith'
The data used here is gathered from a project I developed : https://github.com/dwallach1/StockerBot
I hope to develop a financial sentiment text classifier that would be able to track Twitter's (and the entire public's) feelings about any publicly traded company (and cryptocurrency)
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Dataset Card for Twitter US Airline Sentiment
Dataset Summary
This data originally came from Crowdflower's Data for Everyone library. As the original source says,
A sentiment analysis job about the problems of each major U.S. airline. Twitter data was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service").
The data we're… See the full description on the dataset page: https://huggingface.co/datasets/osanseviero/twitter-airline-sentiment.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. This dataset is used to classify finance-related tweets for their sentiment.
The dataset holds 11,932 documents annotated with 3 labels:
sentiments = { "LABEL_0": "Bearish", "LABEL_1": "Bullish", "LABEL_2": "Neutral" }
The data was collected using the Twitter API. The current dataset supports the multi-class classification… See the full description on the dataset page: https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SSH CENTRE (Social Sciences and Humanities for Climate, Energy aNd Transport Research Excellence) is a Horizon Europe project, engaging directly with stakeholders across research, policy, and business (including citizens) to strengthen social innovation, SSH-STEM collaboration, transdisciplinary policy advice, inclusive engagement, and SSH communities across Europe, accelerating the EU’s transition to carbon neutrality. SSH CENTRE is based in a range of activities related to Open Science, inclusivity and diversity – especially with regards Southern and Eastern Europe and different career stages – including: development of novel SSH-STEM collaborations to facilitate the delivery of the EU Green Deal; SSH knowledge brokerage to support regions in transition; and the effective design of strategies for citizen engagement in EU R&I activities. Outputs include action-led agendas and building stakeholder synergies through regular Policy Insight events.This is captured in a high-profile virtual SSH CENTRE generating and sharing best practice for SSH policy advice, overcoming fragmentation to accelerate the EU’s journey to a sustainable future.The documents uploaded here are part of WP2 whereby novel, interdisciplinary teams were provided funding to undertake activities to develop a policy recommendation related to EU Green Deal policy. Each of these policy recommendations, and the activities that inform them, will be written-up as a chapter in an edited book collection. Three books will make up this edited collection - one on climate, one on energy and one on mobility. As part of writing a chapter for the SSH CENTRE book on ‘Mobility’, we set out to analyse the sentiment of users on Twitter regarding shared and active mobility modes in Brussels. This involved us collecting tweets between 2017-2022. A tweet was collected if it contained a previously defined mobility keyword (for example: metro) and either the name of a (local) politician, a neighbourhood or municipality, or a (shared) mobility provider. The files attached to this Zenodo webpage is a csv files containing the tweets collected.”.
Dataset Card for cardiffnlp/tweet_sentiment_multilingual
Dataset Summary
Tweet Sentiment Multilingual consists of sentiment analysis dataset on Twitter in 8 different lagnuages.
arabic english french german hindi italian portuguese spanish
Supported Tasks and Leaderboards
text_classification: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.
Dataset Structure
Data Instances
An instance from… See the full description on the dataset page: https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Twitter is an online Social Media Platform where people share their their though as tweets. It is observed that some people misuse it to tweet hateful content. Twitter is trying to tackle this problem and we shall help it by creating a strong NLP based-classifier model to distinguish the negative tweets & block such tweets. Can you build a strong classifier model to predict the same?
Each row contains the text of a tweet and a sentiment label. In the training set you are provided with a word or phrase drawn from the tweet (selected_text) that encapsulates the provided sentiment.
Make sure, when parsing the CSV, to remove the beginning / ending quotes from the text field, to ensure that you don't include them in your training.
You're attempting to predict the word or phrase from the tweet that exemplifies the provided sentiment. The word or phrase should include all characters within that span (i.e. including commas, spaces, etc.)
Columns:
textID - unique ID for each piece of text
text - the text of the tweet
sentiment - the general sentiment of the tweet
Acknowledgement:
The dataset is download from Kaggle Competetions:
https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.csv
Objective: Understand the Dataset & cleanup (if required). Build classification models to predict the twitter sentiments. Compare the evaluation metrics of vaious classification algorithms.
Original Data Source: Twitter Tweets Sentiment Dataset
https://brightdata.com/licensehttps://brightdata.com/license
Our Twitter Sentiment Analysis Dataset provides a comprehensive collection of tweets, enabling businesses, researchers, and analysts to assess public sentiment, track trends, and monitor brand perception in real time. This dataset includes detailed metadata for each tweet, allowing for in-depth analysis of user engagement, sentiment trends, and social media impact.
Key Features:
Tweet Content & Metadata: Includes tweet text, hashtags, mentions, media attachments, and engagement metrics such as likes, retweets, and replies.
Sentiment Classification: Analyze sentiment polarity (positive, negative, neutral) to gauge public opinion on brands, events, and trending topics.
Author & User Insights: Access user details such as username, profile information, follower count, and account verification status.
Hashtag & Topic Tracking: Identify trending hashtags and keywords to monitor conversations and sentiment shifts over time.
Engagement Metrics: Measure tweet performance based on likes, shares, and comments to evaluate audience interaction.
Historical & Real-Time Data: Choose from historical datasets for trend analysis or real-time data for up-to-date sentiment tracking.
Use Cases:
Brand Monitoring & Reputation Management: Track public sentiment around brands, products, and services to manage reputation and customer perception.
Market Research & Consumer Insights: Analyze consumer opinions on industry trends, competitor performance, and emerging market opportunities.
Political & Social Sentiment Analysis: Evaluate public opinion on political events, social movements, and global issues.
AI & Machine Learning Applications: Train sentiment analysis models for natural language processing (NLP) and predictive analytics.
Advertising & Campaign Performance: Measure the effectiveness of marketing campaigns by analyzing audience engagement and sentiment.
Our dataset is available in multiple formats (JSON, CSV, Excel) and can be delivered via API, cloud storage (AWS, Google Cloud, Azure), or direct download.
Gain valuable insights into social media sentiment and enhance your decision-making with high-quality, structured Twitter data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a large-scale, multilingual and longitudinal Twitter sentiment dataset sampled through distant supervision from the Twitter Stream Grab archive (https://archive.org/details/twitterstream). It covers the time period between January 2013 and June 2020 for 7 languages:- Arabic (ar)- German (de)- English (en)- Spanish (es)- French (fr)- Italian (it)- Chinese (zh)With the files in this repository, we provide tweet IDs that can be used to rehydrate the datasets by using the files available from the Twitter Stream Grab.Files are formatted as TSV files, with the following columns:date \t tweetid \t sentiment \t evidencewhere:- date is the day in which the tweet was posted.- tweetid is the ID of the tweet- sentiment is either pos or neg- evidence is the set of emojis or emoticons used to determine if the tweet was positive or negative.More details about the dataset can be found in the following paper (please cite the paper if you use the dataset):TBA
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Financial Sentiment Analysis Dataset
Overview
This dataset is a comprehensive collection of tweets focused on financial topics, meticulously curated to assist in sentiment analysis in the domain of finance and stock markets. It serves as a valuable resource for training machine learning models to understand and predict sentiment trends based on social media discourse, particularly within the financial sector.
Data Description
The dataset comprises tweets… See the full description on the dataset page: https://huggingface.co/datasets/TimKoornstra/financial-tweets-sentiment.
This dataset gives a cursory glimpse at the overall sentiment trend of the public discourse regarding the COVID-19 pandemic on Twitter. The live scatter plot of this dataset is available as The Overall Trend block at https://live.rlamsal.com.np. The trend graph reveals multiple peaks and drops that need further analysis. The n-grams during those peaks and drops can prove beneficial for better understanding the discourse. The dataset will be updated weekly and will continue until the development of the Coronavirus (COVID-19) Tweets Dataset is ongoing.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Tweets dataset for a range of applications to enhance business strategies and market insights. Analyzing this dataset offers a comprehensive view of social media dynamics, empowering organizations to optimize their communication and marketing strategies. Access the full dataset or select specific data points tailored to your needs. Popular use cases include sentiment analysis to gauge public opinion and brand perception, competitor analysis by examining engagement and sentiment around rival brands, and crisis management through real-time tracking of tweet sentiment and influential voices during critical events.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
If you use the dataset, cite the paper: https://doi.org/10.1016/j.eswa.2022.117541
The most comprehensive dataset to date regarding climate change and human opinions via Twitter. It has the heftiest temporal coverage, spanning over 13 years, includes over 15 million tweets spatially distributed across the world, and provides the geolocation of most tweets. Seven dimensions of information are tied to each tweet, namely geolocation, user gender, climate change stance and sentiment, aggressiveness, deviations from historic temperature, and topic modeling, while accompanied by environmental disaster events information. These dimensions were produced by testing and evaluating a plethora of state-of-the-art machine learning algorithms and methods, both supervised and unsupervised, including BERT, RNN, LSTM, CNN, SVM, Naive Bayes, VADER, Textblob, Flair, and LDA.
The following columns are in the dataset:
➡ created_at: The timestamp of the tweet. ➡ id: The unique id of the tweet. ➡ lng: The longitude the tweet was written. ➡ lat: The latitude the tweet was written. ➡ topic: Categorization of the tweet in one of ten topics namely, seriousness of gas emissions, importance of human intervention, global stance, significance of pollution awareness events, weather extremes, impact of resource overconsumption, Donald Trump versus science, ideological positions on global warming, politics, and undefined. ➡ sentiment: A score on a continuous scale. This scale ranges from -1 to 1 with values closer to 1 being translated to positive sentiment, values closer to -1 representing a negative sentiment while values close to 0 depicting no sentiment or being neutral. ➡ stance: That is if the tweet supports the belief of man-made climate change (believer), if the tweet does not believe in man-made climate change (denier), and if the tweet neither supports nor refuses the belief of man-made climate change (neutral). ➡ gender: Whether the user that made the tweet is male, female, or undefined. ➡ temperature_avg: The temperature deviation in Celsius and relative to the January 1951-December 1980 average at the time and place the tweet was written. ➡ aggressiveness: That is if the tweet contains aggressive language or not.
Since Twitter forbids making public the text of the tweets, in order to retrieve it you need to do a process called hydrating. Tools such as Twarc or Hydrator can be used to hydrate tweets.
Arabic Sentiment Tweets Dataset (ASTD) is an Arabic social sentiment analysis dataset gathered from Twitter. It consists of about 10,000 tweets which are classified as objective, subjective positive, subjective negative, and subjective mixed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Description
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Data Collection Method
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Dataset Content
ID: A unique identifier for each tweet.
text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
user_followers_count: The current number of followers the account has. It is a non-negative integer.
user_friends_count: The number of users that the account is following. It is a non-negative integer.
user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.
Cite as
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
Potential Use Cases
This dataset is aimed at academic researchers and practitioners with interests in:
Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
Exploring correlations between user engagement metrics and sentiment in discussions about AI.
Data Format and File Type
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
License
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Overview This is an entity-level sentiment analysis dataset of twitter. Given a message and an entity, the task is to judge the sentiment of the message about the entity. There are three classes in this dataset: Positive, Negative and Neutral. We regard messages that are not relevant to the entity (i.e. Irrelevant) as Neutral.
Usage Please use twitter_training.csv as the training set and twitter_validation.csv as the validation set. Top 1 classification accuracy is used as the metric.
Original Data Source: Twitter Sentiment Analysis
This dataset was created by Nitin G
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset has three sentiments namely, negative, neutral, and positive. It contains two fields for the tweet and label.