27 datasets found
  1. House price (newly built dwellings) to residence-based earnings ratio

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price (newly built dwellings) to residence-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/housepricenewlybuiltdwellingstoresidencebasedearningsratio
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices for newly-built dwellings, by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  2. e

    Ratio of House Prices to Earnings, Borough

    • data.europa.eu
    • data.wu.ac.at
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Communities and Local Government, Ratio of House Prices to Earnings, Borough [Dataset]. https://data.europa.eu/88u/dataset/ratio-house-prices-earnings-borough
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    Department for Communities and Local Government
    Description

    This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.

    The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.

    Pre-2013 Land Registry housing data are for the first half of the year only, so that they are comparable to the ASHE data which are as at April. This is no longer the case from 2013 onwards as this data uses house price data from the ONS House Price Statistics for Small Areas statistical release. Prior to 2006 data are not available for Inner and Outer London.

    The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
    The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
    The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.

    Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data since 2014 has been calculated by the GLA using Land Registry house prices and ONS Earnings data.

    Link to DCLG Live Tables

    An interactive map showing the affordability ratios by local authority for 2013, 2014 and 2015 is also available.

  3. House price to workplace-based earnings ratio

    • cy.ons.gov.uk
    • ons.gov.uk
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to workplace-based earnings ratio [Dataset]. https://cy.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoworkplacebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  4. d

    Living Wage

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Living Wage [Dataset]. https://catalog.data.gov/dataset/living-wage-72c58
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on the living wage and the percent of families with incomes below the living wage for California, its counties, regions and cities/towns. Living wage is the wage needed to cover basic family expenses (basic needs budget) plus all relevant taxes; it does not include publicly provided income or housing assistance. The percent of families below the living wage was calculated using data from the Living Wage Calculator and the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. The living wage is the wage or annual income that covers the cost of the bare necessities of life for a worker and his/her family. These necessities include housing, transportation, food, childcare, health care, and payment of taxes. Low income populations and non-white race/ethnic have disproportionately lower wages, poorer housing, and higher levels of food insecurity. More information about the data table and a data dictionary can be found in the About/Attachments section.

  5. w

    House price to earnings ratio, England

    • data.wu.ac.at
    • opendatacommunities.org
    • +1more
    html
    Updated Jan 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2017). House price to earnings ratio, England [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/YzMxOGY2YjgtM2Q3OC00YmM2LWE5ZTYtMTAxYzVjNWZjMTA0
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 18, 2017
    Dataset provided by
    Ministry of Housing, Communities and Local Government
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This dataset contains the ratio of lower quartile/median house price to lower quartile/median earnings in England

    This dataset uses the median/lower quartile house price data sourced from ONS House Price Statistics for Small Areas (HPSSA) statistical release for years 2013-2015 and house price data sourced directly from Land Registry prior to 2013. This leads to slight differences in the distribution of affordability ratios before and after 2013 which should be noted if the dataset is used as a time series. It is planned to update the ratios with the HPSSA dataset for all years in the future.

    The house price data is then compared to the median/lower quartile income data of full time workers from the Annual Survey of Hours and Earnings (ASHE) produced by the ONS.

    This data was derived from Table 576 and 577, available for download as an Excel spreadsheet from the Live tables page (https://www.gov.uk/government/statistical-data-sets/live-tables-on-housing-market-and-house-prices). More details about the data sources are also available in the link provided.

  6. N

    Cogan House Township, Pennsylvania annual median income by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Cogan House Township, Pennsylvania annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/cogan-house-township-pa-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Cogan House Township
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Cogan House township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Cogan House township, the median income for all workers aged 15 years and older, regardless of work hours, was $50,192 for males and $24,732 for females.

    These income figures highlight a substantial gender-based income gap in Cogan House township. Women, regardless of work hours, earn 49 cents for each dollar earned by men. This significant gender pay gap, approximately 51%, underscores concerning gender-based income inequality in the township of Cogan House township.

    - Full-time workers, aged 15 years and older: In Cogan House township, among full-time, year-round workers aged 15 years and older, males earned a median income of $73,750, while females earned $37,083, leading to a 50% gender pay gap among full-time workers. This illustrates that women earn 50 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Cogan House township, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Cogan House township median household income by race. You can refer the same here

  7. Living Wage

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Living Wage [Dataset]. https://data.chhs.ca.gov/dataset/living-wage
    Explore at:
    xlsx, xlsx(1581658), zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This table contains data on the living wage and the percent of families with incomes below the living wage for California, its counties, regions and cities/towns. Living wage is the wage needed to cover basic family expenses (basic needs budget) plus all relevant taxes; it does not include publicly provided income or housing assistance. The percent of families below the living wage was calculated using data from the Living Wage Calculator and the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. The living wage is the wage or annual income that covers the cost of the bare necessities of life for a worker and his/her family. These necessities include housing, transportation, food, childcare, health care, and payment of taxes. Low income populations and non-white race/ethnic have disproportionately lower wages, poorer housing, and higher levels of food insecurity. More information about the data table and a data dictionary can be found in the About/Attachments section.

  8. d

    Home and Community Based Services Private Pay Rates

    • catalog.data.gov
    • data.ct.gov
    • +3more
    Updated May 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). Home and Community Based Services Private Pay Rates [Dataset]. https://catalog.data.gov/dataset/home-and-community-based-services-private-pay-rates
    Explore at:
    Dataset updated
    May 17, 2025
    Dataset provided by
    data.ct.gov
    Description

    This dataset provides a list of providers of home and community based services in Connecticut and their private pay rates for long term care services as of January 1st each year, beginning with data from 2013.

  9. EnhancedHousingPricesData

    • kaggle.com
    Updated Dec 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaroslav53 (2023). EnhancedHousingPricesData [Dataset]. https://www.kaggle.com/datasets/yaroslav53/enhancedhousingmarketdata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yaroslav53
    Description

    EnhancedHousingMarketData.csv is an auxiliary dataset for the "Housing Prices" competition, containing key economic and demographic indicators vital for real estate market analysis. It includes data on non-farm employment, housing price index, per capita income, total quarterly wages, quantitative indexes of real GDP, total GDP, real GDP, stable population, employed individuals, and the average weekly wage in the private sector, along with the unemployment rate. This dataset aids in better understanding the factors influencing housing prices and allows for a more in-depth analysis of the real estate market.

    "**TotalNonfarmEmployees**" - reflects the total number of employees working outside the agricultural sector. This figure includes workers in industries such as manufacturing, construction, trade, transportation, education, healthcare, and other non-agricultural sectors, making it a key indicator of economic activity and employment in the region.

    "**HousingPriceIndex**" - represents a housing price index, reflecting changes in real estate prices in a specific region for a given month. This index can be used to analyze trends in the real estate market and assess the overall economic conditions.

    "**AnnualPerCapitaIncome**" - represents the annual per capita income, measured yearly. This indicator reflects the average income per resident in a specific region over a year, serving as an important measure of the population's economic well-being.

    "**QuarterlyTotalWages**" - represents the total quarterly wages, measured in dollars and adjusted for seasonal variations. This metric reflects the sum of wages paid by employers insured for unemployment insurance over a calendar quarter. It includes components such as vacation pay, bonuses, and tips.

    "**TotalRealGDPChainIndex**" - represents the total annual quantitative index of real GDP, encompassing data from all private sectors and the government. It is based on the Fisher chain-weighted method, tracking changes in production volume or expenditures while eliminating the effects of price changes. This index is useful for comparing the volumes of production or expenditures across different time periods.

    "**TotalGDP**" - describes the total Gross Domestic Product (GDP), measured in millions of dollars and calculated annually without seasonal adjustments. This metric encompasses all private sectors and the government, reflecting the market value of all final goods and services produced within an agglomeration. The agglomeration GDP represents the gross output minus intermediate costs, serving as a key indicator of economic activity and production volume.

    "**TotalRealGDP**" - represents the total real Gross Domestic Product, measured in millions of chained 2012 dollars and calculated annually without seasonal adjustments. This metric includes data from all private sectors and the government. The real GDP for agglomerations is a measure of the gross product of each agglomeration, adjusted for inflation, and based on national prices for goods and services produced in the agglomeration.

    "**StablePopulation**" - reflects the stable population, measured in thousands of people and calculated annually without seasonal adjustments. This metric represents population estimates as of July 1st each year, providing reliable data for analyzing demographic trends and planning purposes.

    "**EmployedIndividuals**" - represents the number of employed individuals, measured in persons without seasonal adjustment and updated monthly. The data are derived from the Current Population Survey (CPS). Employed individuals include those who did any paid work, owned a business or farm, worked 15 hours or more as unpaid workers in a family business, or were temporarily absent from their job for various reasons. This metric is important for analyzing employment levels and the economic activity of the population.

    "**AverageWeeklyWagePrivate**" - denotes the average weekly wage of private enterprise employees, measured in dollars per week and calculated quarterly without seasonal adjustment. It includes payments made by employers insured against unemployment over the quarter, encompassing vacation pay, bonuses, stock options, tips, and other components. This metric is important for assessing the level of wages in the private sector.

    "**UnemploymentRate**" - represents the unemployment rate, measured in percentages and calculated monthly without seasonal adjustments. This metric indicates the proportion of the unemployed within the total labor force, providing key information about the labor market's condition and the population's economic activity.

  10. N

    Mountain Home, AR annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Mountain Home, AR annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a52a5254-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mountain Home, Arkansas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Mountain Home. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Mountain Home, the median income for all workers aged 15 years and older, regardless of work hours, was $33,003 for males and $23,731 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 28% between the median incomes of males and females in Mountain Home. With women, regardless of work hours, earning 72 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Mountain Home.

    - Full-time workers, aged 15 years and older: In Mountain Home, among full-time, year-round workers aged 15 years and older, males earned a median income of $40,799, while females earned $38,645, resulting in a 5% gender pay gap among full-time workers. This illustrates that women earn 95 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Mountain Home.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Mountain Home.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mountain Home median household income by race. You can refer the same here

  11. N

    Home Lake Township, Minnesota annual median income by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Home Lake Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a51d0b43-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Home Lake Township, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Home Lake township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Home Lake township, the median income for all workers aged 15 years and older, regardless of work hours, was $76,250 for males and $24,375 for females.

    These income figures highlight a substantial gender-based income gap in Home Lake township. Women, regardless of work hours, earn 32 cents for each dollar earned by men. This significant gender pay gap, approximately 68%, underscores concerning gender-based income inequality in the township of Home Lake township.

    - Full-time workers, aged 15 years and older: In Home Lake township, among full-time, year-round workers aged 15 years and older, males earned a median income of $88,750, while females earned $45,938, leading to a 48% gender pay gap among full-time workers. This illustrates that women earn 52 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Home Lake township, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home Lake township median household income by race. You can refer the same here

  12. a

    Median Income, Home Value and Residential Property Taxes in NJ Census Tracts...

    • hub.arcgis.com
    • njogis-newjersey.opendata.arcgis.com
    Updated Mar 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJ Department of Community Affairs (2023). Median Income, Home Value and Residential Property Taxes in NJ Census Tracts [Dataset]. https://hub.arcgis.com/datasets/709328735a5849d891ff3478e7559a56
    Explore at:
    Dataset updated
    Mar 2, 2023
    Dataset authored and provided by
    NJ Department of Community Affairs
    Area covered
    Description

    All data are 2020 Census Tract (neighborhood) level five-year estimates from the U.S. Census Bureau American Community Survey from 2017 to 2021. Median household income earned in the past 12 months. Includes wage or salary income; net self-employment income; interest, dividends, or net rental or royalty income or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); public assistance or welfare payments; retirement, survivor, or disability pensions; and all other income. Median home value (an estimate of how much the property would sell for if it were for sale) for properties owned, being bought, vacant for sale, or sold but not occupied at the time of the survey. Data are based on values reported by property owners. Median real estate taxes (due to all taxing jurisdictions) for owner-occupied properties are based on taxes reported by homeowners to the Census Bureau in the American Community Survey from 2017 to 2021.

  13. Housing in London

    • kaggle.com
    zip
    Updated Apr 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justinas Cirtautas (2020). Housing in London [Dataset]. https://www.kaggle.com/justinas/housing-in-london
    Explore at:
    zip(173456 bytes)Available download formats
    Dataset updated
    Apr 29, 2020
    Authors
    Justinas Cirtautas
    Area covered
    London
    Description

    Update 29-04-2020: The data is now split into two files based on the variable collection frequency (monthly and yearly). Additional variables added: area size in hectares, number of jobs in the area, number of people living in the area.

    Context

    I have been inspired by Xavier and his work on Barcelona to explore the city of London! 🇬🇧 💂

    Content

    The datasets is primarily centered around the housing market of London. However, it contains a lot of additional relevant data: - Monthly average house prices - Yearly number of houses - Yearly number of houses sold - Yearly percentage of households that recycle - Yearly life satisfaction - Yearly median salary of the residents of the area - Yearly mean salary of the residents of the area - Monthly number of crimes committed - Yearly number of jobs - Yearly number of people living in the area - Area size in hectares

    The data is split by areas of London called boroughs (a flag exists to identify these), but some of the variables have other geographical UK regions for reference (like England, North East, etc.). There have been no changes made to the data except for melting it into a long format from the original tables.

    Acknowledgements

    The data has been extracted from London Datastore. It is released under UK Open Government License v2 and v3. The underlining datasets can be found here: https://data.london.gov.uk/dataset/uk-house-price-index https://data.london.gov.uk/dataset/number-and-density-of-dwellings-by-borough https://data.london.gov.uk/dataset/subjective-personal-well-being-borough https://data.london.gov.uk/dataset/household-waste-recycling-rates-borough https://data.london.gov.uk/dataset/earnings-place-residence-borough https://data.london.gov.uk/dataset/recorded_crime_summary https://data.london.gov.uk/dataset/jobs-and-job-density-borough https://data.london.gov.uk/dataset/ons-mid-year-population-estimates-custom-age-tables

    Cover photo by Frans Ruiter from Unsplash

    Inspiration

    The dataset lends itself for extensive exploratory data analysis. It could also be a great supervised learning regression problem to predict house price changes of different boroughs over time.

  14. s

    Home Datasets Labour market and wages

    • store.smartdatahub.io
    Updated Oct 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Home Datasets Labour market and wages [Dataset]. https://store.smartdatahub.io/dataset/is_statistics_iceland_labour_market_and_wages
    Explore at:
    Dataset updated
    Oct 9, 2018
    Description

    Labour market and wages

  15. N

    Charlotte Court House, VA annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Charlotte Court House, VA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a50a4b97-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Virginia, Charlotte Court House
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Charlotte Court House. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Charlotte Court House, the median income for all workers aged 15 years and older, regardless of work hours, was $38,750 for males and $35,000 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 10%, indicating a significant disparity between the median incomes of males and females in Charlotte Court House. Women, regardless of work hours, still earn 90 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Charlotte Court House, for all full-time workers aged 15 years and older, the median income was equal at, $53,750 for both males and females. This indicates a gender income balance in Charlotte Court House, where both men and women, in full-time year-round roles, earn an equal income.

    Curiously, across all roles (full-time and others), there was a notable income disparity between the median incomes for women and men. This hints at a considerable reduction in the income gap within full-time roles, potentially indicating progress towards income equality for women in these roles within Charlotte Court House.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Charlotte Court House median household income by race. You can refer the same here

  16. N

    Sweet Home, OR annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Sweet Home, OR annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/sweet-home-or-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sweet Home
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Sweet Home. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Sweet Home, the median income for all workers aged 15 years and older, regardless of work hours, was $35,745 for males and $22,144 for females.

    These income figures highlight a substantial gender-based income gap in Sweet Home. Women, regardless of work hours, earn 62 cents for each dollar earned by men. This significant gender pay gap, approximately 38%, underscores concerning gender-based income inequality in the city of Sweet Home.

    - Full-time workers, aged 15 years and older: In Sweet Home, among full-time, year-round workers aged 15 years and older, males earned a median income of $53,992, while females earned $43,309, leading to a 20% gender pay gap among full-time workers. This illustrates that women earn 80 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Sweet Home.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Sweet Home median household income by race. You can refer the same here

  17. N

    New Home, TX annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). New Home, TX annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/new-home-tx-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Home, Texas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in New Home. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In New Home, the median income for all workers aged 15 years and older, regardless of work hours, was $45,938 for males and $24,583 for females.

    These income figures highlight a substantial gender-based income gap in New Home. Women, regardless of work hours, earn 54 cents for each dollar earned by men. This significant gender pay gap, approximately 46%, underscores concerning gender-based income inequality in the city of New Home.

    - Full-time workers, aged 15 years and older: In New Home, among full-time, year-round workers aged 15 years and older, males earned a median income of $54,375, while females earned $26,944, leading to a 50% gender pay gap among full-time workers. This illustrates that women earn 50 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in New Home, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Home median household income by race. You can refer the same here

  18. N

    Home Township, Minnesota annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Home Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a51d0bc3-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Home Township, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Home township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Home township, the median income for all workers aged 15 years and older, regardless of work hours, was $54,612 for males and $38,021 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 30% between the median incomes of males and females in Home township. With women, regardless of work hours, earning 70 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetownship of Home township.

    - Full-time workers, aged 15 years and older: In Home township, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,250, while females earned $59,375

    Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.02 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home township median household income by race. You can refer the same here

  19. N

    Prairie Home, MO annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Prairie Home, MO annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/prairie-home-mo-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Prairie Home
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Prairie Home. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Prairie Home, the median income for all workers aged 15 years and older, regardless of work hours, was $36,389 for males and $28,750 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 21% between the median incomes of males and females in Prairie Home. With women, regardless of work hours, earning 79 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Prairie Home.

    - Full-time workers, aged 15 years and older: In Prairie Home, among full-time, year-round workers aged 15 years and older, males earned a median income of $50,000, while females earned $43,250, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Prairie Home.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Prairie Home.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Prairie Home median household income by race. You can refer the same here

  20. N

    Home Brook Township, Minnesota annual median income by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Home Brook Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/home-brook-township-mn-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Home Brook Township
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Home Brook township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Home Brook township, the median income for all workers aged 15 years and older, regardless of work hours, was $40,625 for males and $24,000 for females.

    These income figures highlight a substantial gender-based income gap in Home Brook township. Women, regardless of work hours, earn 59 cents for each dollar earned by men. This significant gender pay gap, approximately 41%, underscores concerning gender-based income inequality in the township of Home Brook township.

    - Full-time workers, aged 15 years and older: In Home Brook township, among full-time, year-round workers aged 15 years and older, males earned a median income of $85,000, while females earned $44,375, leading to a 48% gender pay gap among full-time workers. This illustrates that women earn 52 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Home Brook township, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home Brook township median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office for National Statistics (2025). House price (newly built dwellings) to residence-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/housepricenewlybuiltdwellingstoresidencebasedearningsratio
Organization logo

House price (newly built dwellings) to residence-based earnings ratio

Explore at:
xlsxAvailable download formats
Dataset updated
Mar 24, 2025
Dataset provided by
Office for National Statisticshttp://www.ons.gov.uk/
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

Affordability ratios calculated by dividing house prices for newly-built dwellings, by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

Search
Clear search
Close search
Google apps
Main menu