2 datasets found
  1. W

    Webis-CausalQA-22

    • webis.de
    • anthology.aicmu.ac.cn
    7186761
    Updated 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast (2022). Webis-CausalQA-22 [Dataset]. http://doi.org/10.5281/zenodo.7186761
    Explore at:
    7186761Available download formats
    Dataset updated
    2022
    Dataset provided by
    Bauhaus-Universität Weimar
    The Web Technology & Information Systems Network
    Universität Paderborn
    Combinatorial Algebra Lab, Ural Federal University
    Leipzig University and Friedrich Schiller University Jena
    Friedrich Schiller University Jena
    University of Kassel, hessian.AI, and ScaDS.AI
    Authors
    Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Webis Causal Question Answering 2022 (Webis-CausalQA-22) corpus comprises 1.1M causal question-answer pairs collected from the public QA datasets.

  2. Webis Causal Question Answering 2022

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Dec 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Bondarenko; Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Stefan Heindorf; Lukas Blübaum; Axel-Cyrille Ngonga Ngomo; Axel-Cyrille Ngonga Ngomo; Benno Stein; Benno Stein; Pavel Braslavski; Pavel Braslavski; Matthias Hagen; Matthias Hagen; Martin Potthast; Martin Potthast; Magdalena Wolska; Lukas Blübaum (2022). Webis Causal Question Answering 2022 [Dataset]. http://doi.org/10.5281/zenodo.7476615
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 24, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Bondarenko; Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Stefan Heindorf; Lukas Blübaum; Axel-Cyrille Ngonga Ngomo; Axel-Cyrille Ngonga Ngomo; Benno Stein; Benno Stein; Pavel Braslavski; Pavel Braslavski; Matthias Hagen; Matthias Hagen; Martin Potthast; Martin Potthast; Magdalena Wolska; Lukas Blübaum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Webis Causal Question Answering 2022 (Webis-CausalQA-22) corpus comprises 1.1M causal question-answer pairs collected from the public QA datasets. This dataset was developed to support the development of tailored approaches that can answer causal questions.

    Overview:

    The directory "input" contains the train and validation splits (used for evaluation), the directory "output" contains the evaluation results, and the directory "models" includes the fine-tuned checkpoints.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast (2022). Webis-CausalQA-22 [Dataset]. http://doi.org/10.5281/zenodo.7186761

Webis-CausalQA-22

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
7186761Available download formats
Dataset updated
2022
Dataset provided by
Bauhaus-Universität Weimar
The Web Technology & Information Systems Network
Universität Paderborn
Combinatorial Algebra Lab, Ural Federal University
Leipzig University and Friedrich Schiller University Jena
Friedrich Schiller University Jena
University of Kassel, hessian.AI, and ScaDS.AI
Authors
Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The Webis Causal Question Answering 2022 (Webis-CausalQA-22) corpus comprises 1.1M causal question-answer pairs collected from the public QA datasets.

Search
Clear search
Close search
Google apps
Main menu