100+ datasets found
  1. Z

    Forex News Annotated Dataset for Sentiment Analysis

    • data.niaid.nih.gov
    Updated Nov 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalliopi Kouroumali (2023). Forex News Annotated Dataset for Sentiment Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7976207
    Explore at:
    Dataset updated
    Nov 11, 2023
    Dataset provided by
    Georgios Fatouros
    Kalliopi Kouroumali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.

    To ensure the reliability of the dataset, we manually annotated each headline for sentiment. Instead of solely focusing on the textual content, we ascertained sentiment based on the potential short-term impact of the headline on its corresponding forex pair. This method recognizes the currency market's acute sensitivity to economic news, which significantly influences many trading strategies. As such, this dataset could serve as an invaluable resource for fine-tuning sentiment analysis models in the financial realm.

    We used three categories for annotation: 'positive', 'negative', and 'neutral', which correspond to bullish, bearish, and hold sentiments, respectively, for the forex pair linked to each headline. The following Table provides examples of annotated headlines along with brief explanations of the assigned sentiment.

    Examples of Annotated Headlines
    
    
        Forex Pair
        Headline
        Sentiment
        Explanation
    
    
    
    
        GBPUSD 
        Diminishing bets for a move to 12400 
        Neutral
        Lack of strong sentiment in either direction
    
    
        GBPUSD 
        No reasons to dislike Cable in the very near term as long as the Dollar momentum remains soft 
        Positive
        Positive sentiment towards GBPUSD (Cable) in the near term
    
    
        GBPUSD 
        When are the UK jobs and how could they affect GBPUSD 
        Neutral
        Poses a question and does not express a clear sentiment
    
    
        JPYUSD
        Appropriate to continue monetary easing to achieve 2% inflation target with wage growth 
        Positive
        Monetary easing from Bank of Japan (BoJ) could lead to a weaker JPY in the short term due to increased money supply
    
    
        USDJPY
        Dollar rebounds despite US data. Yen gains amid lower yields 
        Neutral
        Since both the USD and JPY are gaining, the effects on the USDJPY forex pair might offset each other
    
    
        USDJPY
        USDJPY to reach 124 by Q4 as the likelihood of a BoJ policy shift should accelerate Yen gains 
        Negative
        USDJPY is expected to reach a lower value, with the USD losing value against the JPY
    
    
        AUDUSD
    

    RBA Governor Lowe’s Testimony High inflation is damaging and corrosive

        Positive
        Reserve Bank of Australia (RBA) expresses concerns about inflation. Typically, central banks combat high inflation with higher interest rates, which could strengthen AUD.
    

    Moreover, the dataset includes two columns with the predicted sentiment class and score as predicted by the FinBERT model. Specifically, the FinBERT model outputs a set of probabilities for each sentiment class (positive, negative, and neutral), representing the model's confidence in associating the input headline with each sentiment category. These probabilities are used to determine the predicted class and a sentiment score for each headline. The sentiment score is computed by subtracting the negative class probability from the positive one.

  2. d

    Market News Price Dataset

    • catalog.data.gov
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). Market News Price Dataset [Dataset]. https://catalog.data.gov/dataset/market-news-price-dataset1
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    Real-time price data collected by the Boston Market News Reporter. The NOAA Fisheries' "Fishery Market News" began operations in New York City on February 14, 1938. The primary function of this joint Federal/industry program is to provide accurate and unbiased reports depicting current conditions affecting the trade in fish and fishery products. The Boston and New York Market News Reports are now hosted by the Northeast Fisheries Science Center. Please navigate to the URL below for 2014 and newer data: https://www.nefsc.noaa.gov/read/socialsci/marketNews.php

  3. b

    Financial Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Financial Datasets [Dataset]. https://brightdata.com/products/datasets/news/financial
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 5, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Stay informed with our comprehensive Financial News Dataset, designed for investors, analysts, and businesses to track market trends, monitor financial events, and make data-driven decisions.

    Dataset Features

    Financial News Articles: Access structured financial news data, including headlines, summaries, full articles, publication dates, and source details. Market & Economic Indicators: Track financial reports, stock market updates, economic forecasts, and corporate earnings announcements. Sentiment & Trend Analysis: Analyze news sentiment, categorize articles by financial topics, and monitor emerging trends in global markets. Historical & Real-Time Data: Retrieve historical financial news archives or access continuously updated feeds for real-time insights.

    Customizable Subsets for Specific Needs Our Financial News Dataset is fully customizable, allowing you to filter data based on publication date, region, financial topics, sentiment, or specific news sources. Whether you need broad coverage for market research or focused data for investment analysis, we tailor the dataset to your needs.

    Popular Use Cases

    Investment Strategy & Risk Management: Monitor financial news to assess market risks, identify investment opportunities, and optimize trading strategies. Market & Competitive Intelligence: Track industry trends, competitor financial performance, and economic developments. AI & Machine Learning Training: Use structured financial news data to train AI models for sentiment analysis, stock prediction, and automated trading. Regulatory & Compliance Monitoring: Stay updated on financial regulations, policy changes, and corporate governance news. Economic Research & Forecasting: Analyze financial news trends to predict economic shifts and market movements.

    Whether you're tracking stock market trends, analyzing financial sentiment, or training AI models, our Financial News Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.

  4. News Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data, News Datasets [Dataset]. https://brightdata.com/products/datasets/news
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Stay ahead with our comprehensive News Dataset, designed for businesses, analysts, and researchers to track global events, monitor media trends, and extract valuable insights from news sources worldwide.

    Dataset Features

    News Articles: Access structured news data, including headlines, summaries, full articles, publication dates, and source details. Ideal for media monitoring and sentiment analysis. Publisher & Source Information: Extract details about news publishers, including domain, region, and credibility indicators. Sentiment & Topic Classification: Analyze news sentiment, categorize articles by topic, and track emerging trends in real time. Historical & Real-Time Data: Retrieve historical archives or access continuously updated news feeds for up-to-date insights.

    Customizable Subsets for Specific Needs Our News Dataset is fully customizable, allowing you to filter data based on publication date, region, topic, sentiment, or specific news sources. Whether you need broad coverage for trend analysis or focused data for competitive intelligence, we tailor the dataset to your needs.

    Popular Use Cases

    Media Monitoring & Reputation Management: Track brand mentions, analyze media coverage, and assess public sentiment. Market & Competitive Intelligence: Monitor industry trends, competitor activity, and emerging market opportunities. AI & Machine Learning Training: Use structured news data to train AI models for sentiment analysis, topic classification, and predictive analytics. Financial & Investment Research: Analyze news impact on stock markets, commodities, and economic indicators. Policy & Risk Analysis: Track regulatory changes, geopolitical events, and crisis developments in real time.

    Whether you're analyzing market trends, monitoring brand reputation, or training AI models, our News Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.

  5. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Sep 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Sep 12, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6583 points on September 12, 2025, losing 0.06% from the previous session. Over the past month, the index has climbed 1.80% and is up 17.01% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  6. o

    Finance, Stock, Currency / Forex, Crypto, ETF, and News Data

    • openwebninja.com
    json
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2024). Finance, Stock, Currency / Forex, Crypto, ETF, and News Data [Dataset]. https://www.openwebninja.com/api/real-time-finance-data
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Global Financial Markets
    Description

    This dataset provides comprehensive access to financial market data from Google Finance in real-time. Get detailed information on stocks, market quotes, trends, ETFs, international exchanges, forex, crypto, and related news. Perfect for financial applications, trading platforms, and market analysis tools. The dataset is delivered in a JSON format via REST API.

  7. Largest news articles dataset from CNBC

    • crawlfeeds.com
    csv, zip
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Largest news articles dataset from CNBC [Dataset]. https://crawlfeeds.com/datasets/cnbc-news-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jan 6, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Explore the "Largest News Articles Dataset from CNBC," a comprehensive collection of news articles published by CNBC, one of the leading global news sources for business, finance, and current affairs.

    This dataset includes thousands of articles covering a wide range of topics, such as financial markets, economic trends, technology, politics, health, and more. Each article in the dataset provides detailed information, including headlines, publication dates, authors, article content, and categories, offering valuable insights for researchers, data analysts, and media professionals.

    Key Features:

    • Extensive Coverage: Thousands of news articles from CNBC, covering a diverse array of topics including business, finance, technology, and global news.
    • Detailed Metadata: Each article includes essential details such as headline, publication date, author, content, and category, allowing for in-depth analysis and research.
    • Ideal for Analysis: Perfect for researchers, data scientists, and content creators looking to analyze trends in news reporting, study media coverage, or develop content strategies.
    • Up-to-Date Information: Provides a rich source of information on current events and market trends, helping professionals stay informed and make data-driven decisions.

    Whether you're conducting research on financial markets, analyzing media trends, or developing new content, the "Largest News Articles Dataset from CNBC" is an invaluable resource that provides detailed insights and comprehensive coverage of the latest news.

  8. h

    financial-news-multisource

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Ferrell, financial-news-multisource [Dataset]. http://doi.org/10.57967/hf/6432
    Explore at:
    Authors
    Brian Ferrell
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Multi-Source Financial & General News

    🚀 47 MILLION ROWS OF NEWS CONTENT — one unified corpus for market-aware AI/ML

    I combined 15 public news datasets (many small on their own) into one consistent, ready-to-use layer so you don’t have to wrangle them yourself. Everything is normalized to a minimal schema (date, text, extra_fields) and shipped as Parquet shards per subset—streamable, DuckDB-friendly, and built with a trading date policy (this can be edited if folks see other use… See the full description on the dataset page: https://huggingface.co/datasets/Brianferrell787/financial-news-multisource.

  9. Daily News for Stock Market Prediction

    • kaggle.com
    zip
    Updated Nov 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron7sun (2019). Daily News for Stock Market Prediction [Dataset]. https://www.kaggle.com/datasets/aaron7sun/stocknews/discussion/41925
    Explore at:
    zip(6097730 bytes)Available download formats
    Dataset updated
    Nov 13, 2019
    Authors
    Aaron7sun
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Actually, I prepare this dataset for students on my Deep Learning and NLP course.

    But I am also very happy to see kagglers play around with it.

    Have fun!

    Description:

    There are two channels of data provided in this dataset:

    1. News data: I crawled historical news headlines from Reddit WorldNews Channel (/r/worldnews). They are ranked by reddit users' votes, and only the top 25 headlines are considered for a single date. (Range: 2008-06-08 to 2016-07-01)

    2. Stock data: Dow Jones Industrial Average (DJIA) is used to "prove the concept". (Range: 2008-08-08 to 2016-07-01)

    I provided three data files in .csv format:

    1. RedditNews.csv: two columns The first column is the "date", and second column is the "news headlines". All news are ranked from top to bottom based on how hot they are. Hence, there are 25 lines for each date.

    2. DJIA_table.csv: Downloaded directly from Yahoo Finance: check out the web page for more info.

    3. Combined_News_DJIA.csv: To make things easier for my students, I provide this combined dataset with 27 columns. The first column is "Date", the second is "Label", and the following ones are news headlines ranging from "Top1" to "Top25".

    =========================================

    To my students:

    I made this a binary classification task. Hence, there are only two labels:

    "1" when DJIA Adj Close value rose or stayed as the same;

    "0" when DJIA Adj Close value decreased.

    For task evaluation, please use data from 2008-08-08 to 2014-12-31 as Training Set, and Test Set is then the following two years data (from 2015-01-02 to 2016-07-01). This is roughly a 80%/20% split.

    And, of course, use AUC as the evaluation metric.

    =========================================

    +++++++++++++++++++++++++++++++++++++++++

    To all kagglers:

    Please upvote this dataset if you like this idea for market prediction.

    If you think you coded an amazing trading algorithm,

    friendly advice

    do play safe with your own money :)

    +++++++++++++++++++++++++++++++++++++++++

    Feel free to contact me if there is any question~

    And, remember me when you become a millionaire :P

    Note: If you'd like to cite this dataset in your publications, please use:

    Sun, J. (2016, August). Daily News for Stock Market Prediction, Version 1. Retrieved [Date You Retrieved This Data] from https://www.kaggle.com/aaron7sun/stocknews.

  10. h

    twitter-financial-news-sentiment

    • huggingface.co
    • opendatalab.com
    Updated Dec 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    not a (2022). twitter-financial-news-sentiment [Dataset]. https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 4, 2022
    Authors
    not a
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description

    The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. This dataset is used to classify finance-related tweets for their sentiment.

    The dataset holds 11,932 documents annotated with 3 labels:

    sentiments = { "LABEL_0": "Bearish", "LABEL_1": "Bullish", "LABEL_2": "Neutral" }

    The data was collected using the Twitter API. The current dataset supports the multi-class classification… See the full description on the dataset page: https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment.

  11. H

    Financial News Sentiment Dataset (2012-2022) for Market Forecasting and...

    • dataverse.harvard.edu
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ranjit jit Singh; Jyoti Thapa; Sakshi Pandey; Kumar Kumar Shah (2025). Financial News Sentiment Dataset (2012-2022) for Market Forecasting and Portfolio Optimization [Dataset]. http://doi.org/10.7910/DVN/OVW7SF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Ranjit jit Singh; Jyoti Thapa; Sakshi Pandey; Kumar Kumar Shah
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset consists of financial news articles collected from HuffPost, spanning from 2012 to 2022. The data is structured in JSON format, containing headlines, article links, short descriptions, authors, categories, and publication dates. This dataset supports applications in financial NLP, time-series analysis, and sentiment-based trading strategies.

  12. h

    Indian_Financial_News

    • huggingface.co
    Updated May 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    khushi (2025). Indian_Financial_News [Dataset]. https://huggingface.co/datasets/kdave/Indian_Financial_News
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 10, 2025
    Authors
    khushi
    Area covered
    India
    Description

    Dataset Card for Dataset Name

    The FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.

      Dataset… See the full description on the dataset page: https://huggingface.co/datasets/kdave/Indian_Financial_News.
    
  13. w

    Dataset of news links and publication dates about General Agreement on...

    • workwithdata.com
    Updated May 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of news links and publication dates about General Agreement on Tariffs and Trade (Organization)-History [Dataset]. https://www.workwithdata.com/datasets/news?col=news_link%2Cpublication_date&f=1&fcol0=page_name&fop0=%3D&fval0=General+Agreement+on+Tariffs+and+Trade+%28Organization%29-History
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about news. It has 3 rows and is filtered where the keywords includes General Agreement on Tariffs and Trade (Organization)-History. It features 2 columns including news link.

  14. News Events Data in Asia ( Techsalerator)

    • datarade.ai
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2024). News Events Data in Asia ( Techsalerator) [Dataset]. https://datarade.ai/data-products/news-events-data-in-asia-techsalerator-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    United Arab Emirates, Kyrgyzstan, Uzbekistan, Brunei Darussalam, Kazakhstan, Timor-Leste, Maldives, China, Hong Kong, Iran (Islamic Republic of)
    Description

    Techsalerator’s News Event Data in Asia offers a detailed and expansive dataset designed to provide businesses, analysts, journalists, and researchers with comprehensive insights into significant news events across the Asian continent. This dataset captures and categorizes major events reported from a diverse range of news sources, including press releases, industry news sites, blogs, and PR platforms, offering valuable perspectives on regional developments, economic shifts, political changes, and cultural occurrences.

    Key Features of the Dataset: Extensive Coverage:

    The dataset aggregates news events from a wide range of sources such as company press releases, industry-specific news outlets, blogs, PR sites, and traditional media. This broad coverage ensures a diverse array of information from multiple reporting channels. Categorization of Events:

    News events are categorized into various types including business and economic updates, political developments, technological advancements, legal and regulatory changes, and cultural events. This categorization helps users quickly find and analyze information relevant to their interests or sectors. Real-Time Updates:

    The dataset is updated regularly to include the most current events, ensuring users have access to the latest news and can stay informed about recent developments as they happen. Geographic Segmentation:

    Events are tagged with their respective countries and regions within Asia. This geographic segmentation allows users to filter and analyze news events based on specific locations, facilitating targeted research and analysis. Event Details:

    Each event entry includes comprehensive details such as the date of occurrence, source of the news, a description of the event, and relevant keywords. This thorough detailing helps users understand the context and significance of each event. Historical Data:

    The dataset includes historical news event data, enabling users to track trends and perform comparative analysis over time. This feature supports longitudinal studies and provides insights into the evolution of news events. Advanced Search and Filter Options:

    Users can search and filter news events based on criteria such as date range, event type, location, and keywords. This functionality allows for precise and efficient retrieval of relevant information. Asian Countries and Territories Covered: Central Asia: Kazakhstan Kyrgyzstan Tajikistan Turkmenistan Uzbekistan East Asia: China Hong Kong (Special Administrative Region of China) Japan Mongolia North Korea South Korea Taiwan South Asia: Afghanistan Bangladesh Bhutan India Maldives Nepal Pakistan Sri Lanka Southeast Asia: Brunei Cambodia East Timor (Timor-Leste) Indonesia Laos Malaysia Myanmar (Burma) Philippines Singapore Thailand Vietnam Western Asia (Middle East): Armenia Azerbaijan Bahrain Cyprus Georgia Iraq Israel Jordan Kuwait Lebanon Oman Palestine Qatar Saudi Arabia Syria Turkey (partly in Europe, but often included in Asia contextually) United Arab Emirates Yemen Benefits of the Dataset: Strategic Insights: Businesses and analysts can use the dataset to gain insights into significant regional developments, economic conditions, and political changes, aiding in strategic decision-making and market analysis. Market and Industry Trends: The dataset provides valuable information on industry-specific trends and events, helping users understand market dynamics and identify emerging opportunities. Media and PR Monitoring: Journalists and PR professionals can track relevant news across Asia, enabling them to monitor media coverage, identify emerging stories, and manage public relations efforts effectively. Academic and Research Use: Researchers can utilize the dataset for longitudinal studies, trend analysis, and academic research on various topics related to Asian news and events. Techsalerator’s News Event Data in Asia is a crucial resource for accessing and analyzing significant news events across the continent. By offering detailed, categorized, and up-to-date information, it supports effective decision-making, research, and media monitoring across diverse sectors.

  15. w

    Dataset of news links and publication dates about International trade under...

    • workwithdata.com
    Updated May 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of news links and publication dates about International trade under threat : a constructive response [Dataset]. https://www.workwithdata.com/datasets/news?col=news_link%2Cpublication_date&f=1&fcol0=page_name&fop0=%3D&fval0=International+trade+under+threat+%3A+a+constructive+response
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about news. It has 14 rows and is filtered where the keywords includes International trade under threat : a constructive response. It features 2 columns including news link.

  16. financial market news

    • kaggle.com
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rifath F (2024). financial market news [Dataset]. https://www.kaggle.com/datasets/rifathf/financial-market-news
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Rifath F
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Rifath F

    Released under Apache 2.0

    Contents

  17. h

    FNSPID

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zihan, FNSPID [Dataset]. https://huggingface.co/datasets/Zihan1004/FNSPID
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Zihan
    Description

    FNSPID: A Comprehensive Financial News Dataset in Time Series

      Description
    

    FNSPID is a meticulously curated dataset designed to support research and applications in the field of financial news analysis within the context of time-series forecasting. Our dataset encompasses a wide range of financial news articles, providing a rich resource for developing and testing models aimed at understanding market trends, investor sentiment, and other critical financial… See the full description on the dataset page: https://huggingface.co/datasets/Zihan1004/FNSPID.

  18. d

    Fruit and Vegetable Market News Custom Search

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Marketing Service, Department of Agriculture (2025). Fruit and Vegetable Market News Custom Search [Dataset]. https://catalog.data.gov/dataset/fruit-and-vegetable-market-news-custom-search
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Marketing Service, Department of Agriculture
    Description

    The primary function of the Fruit and Vegetable Market News Division of the Fruit and Vegetable Programs is to provide an exchange of information for growers, shippers, wholesalers, researchers and others on supplies, demand and prices of fresh fruit and vegetables and speciality crops.

  19. T

    United States Balance of Trade

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Balance of Trade [Dataset]. https://tradingeconomics.com/united-states/balance-of-trade
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Sep 4, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - Jul 31, 2025
    Area covered
    United States
    Description

    The United States recorded a trade deficit of 78.31 USD Billion in July of 2025. This dataset provides the latest reported value for - United States Balance of Trade - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  20. News Events Data in Latin America( Techsalerator)

    • datarade.ai
    Updated Mar 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2024). News Events Data in Latin America( Techsalerator) [Dataset]. https://datarade.ai/data-products/news-events-data-in-latin-america-techsalerator-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 20, 2024
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Chile, Falkland Islands (Malvinas), Aruba, Martinique, Montserrat, Dominican Republic, Argentina, Cuba, French Guiana, Ecuador, Americas, Latin America
    Description

    Techsalerator’s News Event Data in Latin America offers a detailed and extensive dataset designed to provide businesses, analysts, journalists, and researchers with an in-depth view of significant news events across the Latin American region. This dataset captures and categorizes key events reported from a wide array of news sources, including press releases, industry news sites, blogs, and PR platforms, offering valuable insights into regional developments, economic changes, political shifts, and cultural events.

    Key Features of the Dataset: Comprehensive Coverage:

    The dataset aggregates news events from numerous sources such as company press releases, industry news outlets, blogs, PR sites, and traditional news media. This broad coverage ensures a wide range of information from multiple reporting channels. Categorization of Events:

    News events are categorized into various types including business and economic updates, political developments, technological advancements, legal and regulatory changes, and cultural events. This categorization helps users quickly locate and analyze information relevant to their interests or sectors. Real-Time Updates:

    The dataset is updated regularly to include the most recent events, ensuring users have access to the latest news and can stay informed about current developments. Geographic Segmentation:

    Events are tagged with their respective countries and regions within Latin America. This geographic segmentation allows users to filter and analyze news events based on specific locations, facilitating targeted research and analysis. Event Details:

    Each event entry includes comprehensive details such as the date of occurrence, source of the news, a description of the event, and relevant keywords. This thorough detailing helps in understanding the context and significance of each event. Historical Data:

    The dataset includes historical news event data, enabling users to track trends and perform comparative analysis over time. This feature supports longitudinal studies and provides insights into how news events evolve. Advanced Search and Filter Options:

    Users can search and filter news events based on criteria such as date range, event type, location, and keywords. This functionality allows for precise and efficient retrieval of relevant information. Latin American Countries Covered: South America: Argentina Bolivia Brazil Chile Colombia Ecuador Guyana Paraguay Peru Suriname Uruguay Venezuela Central America: Belize Costa Rica El Salvador Guatemala Honduras Nicaragua Panama Caribbean: Cuba Dominican Republic Haiti (Note: Primarily French-speaking but included due to geographic and cultural ties) Jamaica Trinidad and Tobago Benefits of the Dataset: Strategic Insights: Businesses and analysts can use the dataset to gain insights into significant regional developments, economic conditions, and political changes, aiding in strategic decision-making and market analysis. Market and Industry Trends: The dataset provides valuable information on industry-specific trends and events, helping users understand market dynamics and emerging opportunities. Media and PR Monitoring: Journalists and PR professionals can track relevant news across Latin America, enabling them to monitor media coverage, identify emerging stories, and manage public relations efforts effectively. Academic and Research Use: Researchers can utilize the dataset for longitudinal studies, trend analysis, and academic research on various topics related to Latin American news and events. Techsalerator’s News Event Data in Latin America is a crucial resource for accessing and analyzing significant news events across the region. By providing detailed, categorized, and up-to-date information, it supports effective decision-making, research, and media monitoring across diverse sectors.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kalliopi Kouroumali (2023). Forex News Annotated Dataset for Sentiment Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7976207

Forex News Annotated Dataset for Sentiment Analysis

Explore at:
Dataset updated
Nov 11, 2023
Dataset provided by
Georgios Fatouros
Kalliopi Kouroumali
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.

To ensure the reliability of the dataset, we manually annotated each headline for sentiment. Instead of solely focusing on the textual content, we ascertained sentiment based on the potential short-term impact of the headline on its corresponding forex pair. This method recognizes the currency market's acute sensitivity to economic news, which significantly influences many trading strategies. As such, this dataset could serve as an invaluable resource for fine-tuning sentiment analysis models in the financial realm.

We used three categories for annotation: 'positive', 'negative', and 'neutral', which correspond to bullish, bearish, and hold sentiments, respectively, for the forex pair linked to each headline. The following Table provides examples of annotated headlines along with brief explanations of the assigned sentiment.

Examples of Annotated Headlines


    Forex Pair
    Headline
    Sentiment
    Explanation




    GBPUSD 
    Diminishing bets for a move to 12400 
    Neutral
    Lack of strong sentiment in either direction


    GBPUSD 
    No reasons to dislike Cable in the very near term as long as the Dollar momentum remains soft 
    Positive
    Positive sentiment towards GBPUSD (Cable) in the near term


    GBPUSD 
    When are the UK jobs and how could they affect GBPUSD 
    Neutral
    Poses a question and does not express a clear sentiment


    JPYUSD
    Appropriate to continue monetary easing to achieve 2% inflation target with wage growth 
    Positive
    Monetary easing from Bank of Japan (BoJ) could lead to a weaker JPY in the short term due to increased money supply


    USDJPY
    Dollar rebounds despite US data. Yen gains amid lower yields 
    Neutral
    Since both the USD and JPY are gaining, the effects on the USDJPY forex pair might offset each other


    USDJPY
    USDJPY to reach 124 by Q4 as the likelihood of a BoJ policy shift should accelerate Yen gains 
    Negative
    USDJPY is expected to reach a lower value, with the USD losing value against the JPY


    AUDUSD

RBA Governor Lowe’s Testimony High inflation is damaging and corrosive

    Positive
    Reserve Bank of Australia (RBA) expresses concerns about inflation. Typically, central banks combat high inflation with higher interest rates, which could strengthen AUD.

Moreover, the dataset includes two columns with the predicted sentiment class and score as predicted by the FinBERT model. Specifically, the FinBERT model outputs a set of probabilities for each sentiment class (positive, negative, and neutral), representing the model's confidence in associating the input headline with each sentiment category. These probabilities are used to determine the predicted class and a sentiment score for each headline. The sentiment score is computed by subtracting the negative class probability from the positive one.

Search
Clear search
Close search
Google apps
Main menu