Facebook
TwitterAs of July 2024, the largest age group among the United States population were adults aged 30 to 34 years old. There were 11.9 million males and some 12.1 million females in this age cohort. The total population of the country was estimated to be 340.1 million Which U.S. state has the largest population? The United States is the third most populous country in the world. It is preceded by China and India, and followed by Indonesia in terms of national population. The gender distribution in the U.S. has remained consistent for many years, with the number of females narrowly outnumbering males. In terms of where the residents are located, California was the state with the largest population. The U.S. population by race and ethnicity The United States poses an ethnically diverse population. In 2023, the number of Black or African American individuals was estimated to be 45.76 million, which represented an increase of over four million since the 2010 census. The number of Asian residents has increased at a similar rate during the same time period and the Hispanic population in the U.S. has also continued to grow.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Resident Population by Age, Sex, and Wilaya (Province) – Algeria Dataset Description This dataset provides demographic information on the resident population of Algeria, broken down by: 1. Age groups (e.g., 0–4, 5–9, ..., 75+) 2. Sex (male, female) 3. Wilaya
It reflects the population distribution across the country, offering detailed insights into the age structure, gender balance, and regional demographics.
Columns Explanation | Column|Description| |--- | | Wilaya |Name of the province (wilaya) | |--- | | Female|Number of Female residents in that age group and wilaya | |--- | | male|Number of male residents in that age group and wilaya | |--- | | Total|otal population (Male + Female) for that age group and wilaya | | | |--- |
Data Source Source: ons.dz
office national des statistiques wikipedia
Coverage: 48 wilayas of Algeria
File Format Format: CSV
Rows: wilaya,Groupe d’âge,Masculin,Féminin,Total
Size: 34.57KB
Facebook
TwitterIn 2023, there were ******* male and ******* female residents under the age of five living in New York City. This shows the city's increasing population, as there were only ******* male residents within the age range of 65 to 69 during the same year.
Facebook
TwitterIntroduction This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends. Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years). Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates. Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period. Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health. Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group. Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods. Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.
Facebook
TwitterThis statistic depicts the age distribution in the United States from 2014 to 2024. In 2024, about 17.32 percent of the U.S. population fell into the 0-14 year category, 64.75 percent into the 15-64 age group and 17.93 percent of the population were over 65 years of age. The increasing population of the United States The United States of America is one of the most populated countries in the world, trailing just behind China and India. A total population count of around 320 million inhabitants and a more-or-less steady population growth over the past decade indicate that the country has steadily improved its living conditions and standards for the population. Leading healthier lifestyles and improved living conditions have resulted in a steady increase of the life expectancy at birth in the United States. Life expectancies of men and women at birth in the United States were at a record high in 2012. Furthermore, a constant fertility rate in recent years and a decrease in the death rate and infant mortality, all due to the improved standard of living and health care conditions, have helped not only the American population to increase but as a result, the share of the population younger than 15 and older than 65 years has also increased in recent years, as can be seen above.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median age gives an idea of the age distribution of the population in a given area. A greater median age would suggest that the area of interest has a relatively large number of older residents, while a lower median age suggests that the area has a relatively large number of younger residents.
Champaign County’s estimated median age has risen for over a decade, but has always stayed between 28 and 31. Year-to-year changes from 2017 to 2019 were statistically significant, but not from 2019 to 2023. The Champaign County estimated median age has been consistently younger than the estimated median ages of the United States and State of Illinois. Champaign County’s figure is likely impacted to some degree by the large student population associated with the University of Illinois.
The estimated median age does not provide a significant amount of detail, and it does not provide any information on why the estimated median age is what it is. However, when placed in the context of other pieces of data and other indicators, it is a valuable starting point in understanding county demographics.
Estimated median age data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Age by Sex.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (8 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (6 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (13 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (7 April 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (7 April 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterEstimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These population projections were prepared by the Australian Bureau of Statistics (ABS) for Geoscience Australia. The projections are not official ABS data and are owned by Geoscience Australia. These projections are for Statistical Areas Level 2 (SA2s) and Local Government Areas (LGAs), and are projected out from a base population as at 30 June 2022, by age and sex. Projections are for 30 June 2023 to 2032, with results disaggregated by age and sex.
Method
The cohort-component method was used for these projections. In this method, the base population is projected forward annually by calculating the effect of births, deaths and migration (the components) within each age-sex cohort according to the specified fertility, mortality and overseas and internal migration assumptions.
The projected usual resident population by single year of age and sex was produced in four successive stages – national, state/territory, capital city/rest of state, and finally SA2s. Assumptions were made for each level and the resulting projected components and population are constrained to the geographic level above for each year.
These projections were derived from a combination of assumptions published in Population Projections, Australia, 2022 (base) to 2071 on 23 November 2023, and historical patterns observed within each state/territory.
Projections – capital city/rest of state regions The base population is 30 June 2022 Estimated Resident Population (ERP) as published in National, state and territory population, June 2022. For fertility, the total fertility rate (at the national level) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, of 1.6 babies per woman being phased in from 2022 levels over five years to 2027, before remaining steady for the remainder of the projection span. Observed state/territory, and greater capital city level fertility differentials were applied to the national data so that established trends in the state and capital city/rest of state relativities were preserved. Mortality rates are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that mortality rates will continue to decline across Australia with state/territory differentials persisting. State/territory and capital city/rest of state differentials were used to ensure projected deaths are consistent with the historical trend. Annual net overseas migration (NOM) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, with an assumed gain (at the national level) of 400,000 in 2022-23, increasing to 315,000 in 2023-24, then declining to 225,000 in 2026-27, after which NOM is assumed to remain constant. State and capital city/rest of state shares are based on a weighted average of NOM data from 2010 to 2019 at the state and territory level to account for the impact of COVID-19. For internal migration, net gains and losses from states and territories and capital city/rest of state regions are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that net interstate migration will trend towards long-term historic average flows.
Projections – Statistical Areas Level 2 The base population for each SA2 is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. The SA2-level fertility and mortality assumptions were derived by combining the medium scenario state/territory assumptions from Population Projections, Australia, 2022 (base) to 2071, with recent fertility and mortality trends in each SA2 based on annual births (by sex) and deaths (by age and sex) published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. Assumed overseas and internal migration for each SA2 is based on SA2-specific annual overseas and internal arrivals and departures estimates published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. The internal migration data was strengthened with SA2-specific data from the 2021 Census, based on the usual residence one year before Census night question. Assumptions were applied by SA2, age and sex. Assumptions were adjusted for some SA2s, to provide more plausible future population levels, and age and sex distribution changes, including areas where populations may not age over time, for example due to significant resident student and defence force populations. Most assumption adjustments were made via the internal migration component. For some SA2s with zero or a very small population base, but where significant population growth is expected, replacement migration age/sex profiles were applied. All SA2-level components and projected projections are constrained to the medium series of capital city/rest of state data in Population Projections, Australia, 2022 (base) to 2071.
Projections – Local Government Areas The base population for each LGA is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. Projections for 30 June 2023 to 2032 were created by converting from the SA2-level population projections to LGAs by age and sex. This was done using an age-specific population correspondence, where the data for each year of the projection span were converted based on 2021 population shares across SA2s. The LGA and SA2 projections are congruous in aggregation as well as in isolation. Unlike the projections prepared at SA2 level, no LGA-specific projection assumptions were used.
Nature of projections and considerations for usage The nature of the projection method and inherent fluctuations in population dynamics mean that care should be taken when using and interpreting the projection results. The projections are not forecasts, but rather illustrate future changes which would occur if the stated assumptions were to apply over the projection period. These projections do not attempt to allow for non-demographic factors such as major government policy decisions, economic factors, catastrophes, wars and pandemics, which may affect future demographic behaviour. To illustrate a range of possible outcomes, alternative projection series for national, state/territory and capital city/rest of state areas, using different combinations of fertility, mortality, overseas and internal migration assumptions, are prepared. Alternative series are published in Population Projections, Australia, 2022 (base) to 2071. Only one series of SA2-level projections was prepared for this product. Population projections can take account of planning and other decisions by governments known at the time the projections were derived, including sub-state projections published by each state and territory government. The ABS generally does not have access to the policies or decisions of commonwealth, state and local governments and businesses that assist in accurately forecasting small area populations. Migration, especially internal migration, accounts for the majority of projected population change for most SA2s. Volatile and unpredictable small area migration trends, especially in the short-term, can have a significant effect on longer-term projection results. Care therefore should be taken with SA2s with small total populations and very small age-sex cells, especially at older ages. While these projections are calculated at the single year of age level, small numbers, and fluctuations across individual ages in the base population and projection assumptions limit the reliability of SA2-level projections at single year of age level. These fluctuations reduce and reliability improves when the projection results are aggregated to broader age groups such as the five-year age bands in this product. For areas with small elderly populations, results aggregated to 65 and over are more reliable than for the individual age groups above 65. With the exception of areas with high planned population growth, SA2s with a base total population of less than 500 have generally been held constant for the projection period in this product as their populations are too small to be reliably projected at all, however their (small) age/sex distributions may change slightly. These SA2s are listed in the appendix. The base (2022) SA2 population estimates and post-2022 projections by age and sex include small artificial cells, including 1s and 2s. These are the result of a confidentialisation process and forced additivity, to control SA2 and capital city/rest of state age/sex totals, being applied to their original values. SA2s and LGAs in this product are based on the Australian Statistical Geography Standard (ASGS) boundaries as at the 2021 Census (ASGS Edition 3). For further information, see Australian Statistical Geography Standard (ASGS) Edition 3.
Data and geography references
Source data publication: Population Projections, Australia, 2022 (base) to 2071 Geographic boundary information: Australian Statistical Geography Standard (ASGS) Edition 3 Further information: Population Projections, Australia methodology Source: Australian Bureau of Statistics (ABS)
Made possible by the Digital Atlas of Australia
The Digital Atlas of Australia is a key Australian Government initiative being led by Geoscience Australia, highlighted in the Data and Digital Government Strategy. It brings together trusted datasets from across government in an interactive, secure, and easy-to-use geospatial platform. The Australian Bureau of Statistics (ABS) is working in partnership with Geoscience Australia to establish a set of web services to make ABS data available in the Digital Atlas of Australia.
Contact the Australian Bureau of Statistics
Email geography@abs.gov.au if you have any questions or feedback about this
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These population projections were prepared by the Australian Bureau of Statistics (ABS) for Geoscience Australia. The projections are not official ABS data and are owned by Geoscience Australia. These projections are for Statistical Areas Level 2 (SA2s) and Local Government Areas (LGAs), and are projected out from a base population as at 30 June 2022, by age and sex. Projections are for 30 June 2023 to 2032, with results disaggregated by age and sex.
Method
The cohort-component method was used for these projections. In this method, the base population is projected forward annually by calculating the effect of births, deaths and migration (the components) within each age-sex cohort according to the specified fertility, mortality and overseas and internal migration assumptions.
The projected usual resident population by single year of age and sex was produced in four successive stages – national, state/territory, capital city/rest of state, and finally SA2s. Assumptions were made for each level and the resulting projected components and population are constrained to the geographic level above for each year.
These projections were derived from a combination of assumptions published in Population Projections, Australia, 2022 (base) to 2071 on 23 November 2023, and historical patterns observed within each state/territory.
Projections – capital city/rest of state regions The base population is 30 June 2022 Estimated Resident Population (ERP) as published in National, state and territory population, June 2022. For fertility, the total fertility rate (at the national level) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, of 1.6 babies per woman being phased in from 2022 levels over five years to 2027, before remaining steady for the remainder of the projection span. Observed state/territory, and greater capital city level fertility differentials were applied to the national data so that established trends in the state and capital city/rest of state relativities were preserved. Mortality rates are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that mortality rates will continue to decline across Australia with state/territory differentials persisting. State/territory and capital city/rest of state differentials were used to ensure projected deaths are consistent with the historical trend. Annual net overseas migration (NOM) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, with an assumed gain (at the national level) of 400,000 in 2022-23, increasing to 315,000 in 2023-24, then declining to 225,000 in 2026-27, after which NOM is assumed to remain constant. State and capital city/rest of state shares are based on a weighted average of NOM data from 2010 to 2019 at the state and territory level to account for the impact of COVID-19. For internal migration, net gains and losses from states and territories and capital city/rest of state regions are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that net interstate migration will trend towards long-term historic average flows.
Projections – Statistical Areas Level 2 The base population for each SA2 is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. The SA2-level fertility and mortality assumptions were derived by combining the medium scenario state/territory assumptions from Population Projections, Australia, 2022 (base) to 2071, with recent fertility and mortality trends in each SA2 based on annual births (by sex) and deaths (by age and sex) published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. Assumed overseas and internal migration for each SA2 is based on SA2-specific annual overseas and internal arrivals and departures estimates published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. The internal migration data was strengthened with SA2-specific data from the 2021 Census, based on the usual residence one year before Census night question. Assumptions were applied by SA2, age and sex. Assumptions were adjusted for some SA2s, to provide more plausible future population levels, and age and sex distribution changes, including areas where populations may not age over time, for example due to significant resident student and defence force populations. Most assumption adjustments were made via the internal migration component. For some SA2s with zero or a very small population base, but where significant population growth is expected, replacement migration age/sex profiles were applied. All SA2-level components and projected projections are constrained to the medium series of capital city/rest of state data in Population Projections, Australia, 2022 (base) to 2071.
Projections – Local Government Areas The base population for each LGA is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. Projections for 30 June 2023 to 2032 were created by converting from the SA2-level population projections to LGAs by age and sex. This was done using an age-specific population correspondence, where the data for each year of the projection span were converted based on 2021 population shares across SA2s. The LGA and SA2 projections are congruous in aggregation as well as in isolation. Unlike the projections prepared at SA2 level, no LGA-specific projection assumptions were used.
Nature of projections and considerations for usage The nature of the projection method and inherent fluctuations in population dynamics mean that care should be taken when using and interpreting the projection results. The projections are not forecasts, but rather illustrate future changes which would occur if the stated assumptions were to apply over the projection period. These projections do not attempt to allow for non-demographic factors such as major government policy decisions, economic factors, catastrophes, wars and pandemics, which may affect future demographic behaviour. To illustrate a range of possible outcomes, alternative projection series for national, state/territory and capital city/rest of state areas, using different combinations of fertility, mortality, overseas and internal migration assumptions, are prepared. Alternative series are published in Population Projections, Australia, 2022 (base) to 2071. Only one series of SA2-level projections was prepared for this product. Population projections can take account of planning and other decisions by governments known at the time the projections were derived, including sub-state projections published by each state and territory government. The ABS generally does not have access to the policies or decisions of commonwealth, state and local governments and businesses that assist in accurately forecasting small area populations. Migration, especially internal migration, accounts for the majority of projected population change for most SA2s. Volatile and unpredictable small area migration trends, especially in the short-term, can have a significant effect on longer-term projection results. Care therefore should be taken with SA2s with small total populations and very small age-sex cells, especially at older ages. While these projections are calculated at the single year of age level, small numbers, and fluctuations across individual ages in the base population and projection assumptions limit the reliability of SA2-level projections at single year of age level. These fluctuations reduce and reliability improves when the projection results are aggregated to broader age groups such as the five-year age bands in this product. For areas with small elderly populations, results aggregated to 65 and over are more reliable than for the individual age groups above 65. With the exception of areas with high planned population growth, SA2s with a base total population of less than 500 have generally been held constant for the projection period in this product as their populations are too small to be reliably projected at all, however their (small) age/sex distributions may change slightly. These SA2s are listed in the appendix. The base (2022) SA2 population estimates and post-2022 projections by age and sex include small artificial cells, including 1s and 2s. These are the result of a confidentialisation process and forced additivity, to control SA2 and capital city/rest of state age/sex totals, being applied to their original values. SA2s and LGAs in this product are based on the Australian Statistical Geography Standard (ASGS) boundaries as at the 2021 Census (ASGS Edition 3). For further information, see Australian Statistical Geography Standard (ASGS) Edition 3.
Made possible by the Digital Atlas of Australia The Digital Atlas of Australia is a key Australian Government initiative being led by Geoscience Australia, highlighted in the Data and Digital Government Strategy. It brings together trusted datasets from across government in an interactive, secure, and easy-to-use geospatial platform. The Australian Bureau of Statistics (ABS) is working in partnership with Geoscience Australia to establish a set of web services to make ABS data available in the Digital Atlas of Australia.
Contact the Australian Bureau of Statistics If you have questions or feedback about this web service, please email geography@abs.gov.au. To subscribe to updates about ABS web services and geospatial products, please complete this form. For information about how the ABS manages any personal information you provide view the ABS privacy policy.
Data and geography references Source data publication: Population Projections, Australia, 2022 (base)
Facebook
Twitterhttps://data.mef.gov.kh/terms-of-usehttps://data.mef.gov.kh/terms-of-use
This table shows the percentage distribution of Cambodia’s 2024 population by five-year age groups, disaggregated by sex (male/female), and residence (urban/rural). It highlights age structure differences across demographics and offers insight into aging trends, youth concentration, and gender composition across urban and rural settings.
Facebook
TwitterIn 2023, there were ******* male and ******* female residents aged 25 to 29 years living in Los Angeles, California.
Facebook
TwitterSources: Official Statistics: Population-Census-data, police registration, information of the civil registry office, civil status registration of the finance office, medical profession’s statistics of the medical association, administration statistics of magistrate departement 15 (departement of tuberculosis abatement), annual report of Vienna’s hospitals, containment measurement of magistrate departement 22, information about household refuse and potential recyclable of magistrate departement 48. Additional: Microcensus.
Facebook
Twitterhttps://data.mef.gov.kh/terms-of-usehttps://data.mef.gov.kh/terms-of-use
This dataset presents the marital status distribution of Cambodia’s population aged 15 and above for the years 2019 and 2024. It is broken down by sex (male/female/both sexes), residence (urban, rural, total), and marital status (never married, married, widowed, divorced, separated). The table allows for analysis of trends in marital status over time and across geographic and gender groups.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
TwitterIn June 2022, it was estimated that around 7.3 percent of Australians were aged between 25 and 29, and the same applied to people aged between 30 and 34. All in all, about 55 percent of Australia’s population was aged 35 years or older as of June 2022. At the same time, the age distribution of the country also shows that the share of children under 14 years old was still higher than that of people over 65 years old.
A breakdown of Australia’s population growth
Australia is the sixth-largest country in the world, yet with a population of around 26 million inhabitants, it is only sparsely populated. Since the 1970s, the population growth of Australia has remained fairly constant. While there was a slight rise in the Australian death rate in 2022, the birth rate of the country decreased after a slight rise in the previous year. The fact that the birth rate is almost double the size of its death rate gives the country one of the highest natural population growth rates of any high-income country.
National distribution of the population
Australia’s population is expected to surpass 28 million people by 2028. The majority of its inhabitants live in the major cities. The most populated states are New South Wales, Victoria, and Queensland. Together, they account for over 75 percent of the population in Australia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
Twitterhttps://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Household Budget Survey (HBS): Total expenditure, average expenditure and structure by sex and age of the main breadwinner. Annual. National.
Facebook
TwitterThe work of Kraus represents a collection of material on population, on population movement and on population structure according to age and sex. The study is subdivided into the individual member states of the German Confederation on the area of the future German Reich, the provinces of Prussia as well as the German Reich in total. The values to the variables inhabitants, marriages, number of births, number of deaths without stillborn ones, number of deaths are to be found in the a-tables. The number of inhabitants according to sex and the age groups of the inhabitants according to sex are to be found in the b-tables. A- and b-tables both contain absolute and relative numbers. Subjects: Tables in the ZA-Online-Database HISTAT: Tables of Population figure and population movement and tables of the distribution by age and sex for the German countries: - Kingdom of Wuerttemberg (Königreich Württemberg) (1815-1875)- Grand Duchy Baden (Großherzogtum Baden) (1815-1875)- Duchy of Braunschweig (Herzogtum Braunschweig) (1816-1875)- Kingdom of Saxony (Königreich Sachsen) (1815-1875)- Grand Duchy of Hesse (Großherzogtum Hessen) (1815-1875)- Kongdom of Bavaria (Königreich Bayern (mit Pfalz)) (Population figure and -movement: 1816-1875; Distribution by age and sex: 1834-1875)- Bavaria to the west of the Rhine: Palatinate (Pfalz) (1818-1875)- Grand Duchy of Mecklenburg-Strelitz, including the principality of Ratzeburg (Großherzogtum Mecklenburg-Strelitz, einschließlich des Fürstentums Ratzeburg) (1815-1875)- Grand Duchy of Mecklenburg-Schwerin (Großherzogtum Mecklenburg-Schwerin) (1815-1875)- Grand Duchy of Oldenburg (Großherzogtum Oldenburg) (1855-1875)- Kingdom of Hannover, since 1966 prussian province (Königreich Hannover, ab 1866 preußische Provinz Hannover) (1815-1875)- The various prussian administrative districts and provinces (1815-1875)- The Free Hanseatic Cities Hamburg, Luebeck and Bremen Tables of Population figure and population movement- The German Empire without Alsace-Lorraine (Deutsches Reich (ohne Elsaß-Lothringen)) (1841-1875)- The German Empire with Alsace-Lorraine (Deutsches Reich (mit Elsaß-Lothringen)) (1840-1875)- Alsace-Lorraine (Elsaß-Lothringen) (1821-1875)
Facebook
TwitterAs of July 2024, the largest age group among the United States population were adults aged 30 to 34 years old. There were 11.9 million males and some 12.1 million females in this age cohort. The total population of the country was estimated to be 340.1 million Which U.S. state has the largest population? The United States is the third most populous country in the world. It is preceded by China and India, and followed by Indonesia in terms of national population. The gender distribution in the U.S. has remained consistent for many years, with the number of females narrowly outnumbering males. In terms of where the residents are located, California was the state with the largest population. The U.S. population by race and ethnicity The United States poses an ethnically diverse population. In 2023, the number of Black or African American individuals was estimated to be 45.76 million, which represented an increase of over four million since the 2010 census. The number of Asian residents has increased at a similar rate during the same time period and the Hispanic population in the U.S. has also continued to grow.