The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Python code provided generates polygonal maps resembling geographical landscapes, where certain areas may represent features like lakes or inaccessible regions. These maps are generated with specified characteristics such as regularity, gap density, and gap scale.
Polygon Generation:
Gap Generation:
Parameterized Generation:
PolygonGenerator Class:
Parameter Ranges and Experimentation:
Map Generation:
PolygonGenerator
class to generate individual polygons representing maps with specific features.Experimentation:
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a raster file showing contribution to the regulation of greenhouse gases (carbon) through carbon sequestration associated with the marine environment. This dataset is part of a dataset series that establishes an ecosystem service maps (national scale) for a set of services prioritised through stakeholder consultation and any intermediate layers created by Environment Systems Ltd in the cause of the project. The individual dataset resources in the datasets series are to be considered in conjunction with the project report: https://www.npws.ie/research-projects/ecosystems-services-mapping-and-assessment The project provides a National Ecosystem and Ecosystem Services (ES) map for a suite of prioritised services to assist implementation of MAES (Mapping and Assessment of Ecosystems and their services) in Ireland. This involves stakeholder consultation for identification of services to be mapped, the development of a list of indicators and proxies for mapping, as well as an assessment of limitations to ES mapping on differing scales (Local, Catchment, Region, National, EU) based on data availability. Reporting on data gaps forms part of the project outputs. The project relied on the usage of pre-existing data, which was also utilised to create intermediate data layers to aid in ES mapping. For a full list of the data used throughout the project workings, please refer to the project report.
The Digital Geologic Map of International Boundary and Water Commission Mapping in Amistad National Recreation Area, Texas and Mexico is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Eddie Collins, Amanda Masterson and Tom Tremblay (Texas Bureau of Economic Geology); Rick Page (U.S. Geological Survey); Gilbert Anaya (International Boundary and Water Commission). Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (ibwc_metadata.txt; available at http://nrdata.nps.gov/amis/nrdata/geology/gis/ibwc_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (ibwc_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Amistad National Recreation Area.
This map is intended to provide general awareness of current and recent tropical weather around the world. It is not intended to replace authoritative government websites but rather to provide situational awareness.
This map contains Live Feeds from the Living Atlas including - Active Hurricanes, Recent Hurricanes, Weather Warnings and Watches, Short-Term Weather Warnings, and NOAA Colorized Satellite Imagery. Weather Radar Data is provided courtesy of DTN.
This map is provided by the Esri Disaster Response Program using the Public Information Solution template. For other hurricane related content and data, please visit the DRP Hub Hurricane Page.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global digital map service market size is projected to grow significantly, from approximately $18.9 billion in 2023 to an estimated $53.1 billion by 2032, reflecting a compelling Compound Annual Growth Rate (CAGR) of 12.5%. This robust growth is driven by the increasing adoption of digital mapping technologies across diverse industries and the rising demand for real-time geographic and navigation data in both consumer and enterprise applications.
One of the primary growth factors for the digital map service market is the expanding use of digital maps in the automotive sector, particularly in the development of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles. These technologies rely heavily on precise and up-to-date mapping data for navigation, obstacle detection, and other functionalities, making digital maps indispensable. Additionally, the proliferation of mobile devices and the integration of mapping services in applications such as ride-sharing, logistics, and local search have significantly contributed to market expansion.
Another significant driver is the increasing reliance on Geographic Information Systems (GIS) across various industries. GIS technology enables organizations to analyze spatial information, improve decision-making processes, and enhance operational efficiencies. Industries such as government, defense, agriculture, and urban planning utilize GIS for land use planning, disaster management, and resource allocation, among other applications. The continuous advancements in GIS technology and the integration of artificial intelligence (AI) and machine learning (ML) are expected to further propel market growth.
The rising demand for real-time location data is also a crucial factor fueling the growth of the digital map service market. Real-time location data is essential for applications such as fleet management, asset tracking, and public safety. Businesses leverage this data to optimize routes, monitor assets, and enhance customer service. The increasing implementation of Internet of Things (IoT) devices and the growing importance of location-based services are likely to sustain the demand for real-time mapping solutions in the coming years.
Regionally, North America leads the digital map service market, driven by the high adoption rate of advanced technologies and the presence of major players in the region. However, the Asia Pacific region is expected to witness the fastest growth, attributed to rapid urbanization, increasing smartphone penetration, and government initiatives to develop smart cities. Europe, Latin America, and the Middle East & Africa are also anticipated to experience substantial growth, fueled by the rising demand for digital mapping solutions across various sectors.
In the digital map service market, the service type segment includes mapping and navigation, geographic information systems (GIS), real-time location data, and others. Mapping and navigation services hold a significant share in the market, primarily due to their extensive use in personal and commercial navigation systems. These services provide detailed road maps, traffic updates, and route planning, which are essential for everyday commuting and logistics operations. The continuous advancements in navigation technologies, such as integration with AI and ML for predictive analytics, are expected to enhance the accuracy and functionality of these services.
Geographic Information Systems (GIS) represent another critical segment within the digital map service market. GIS technology is widely used in various applications, including urban planning, environmental management, and disaster response. The ability to analyze and visualize spatial data in multiple layers allows organizations to make informed decisions and optimize resource allocation. The integration of GIS with other emerging technologies, such as drones and remote sensing, is further expanding its application scope and driving market growth.
Real-time location data services are gaining traction due to their importance in applications like fleet management, asset tracking, and location-based services. These services provide up-to-the-minute information on the geographical position of assets, vehicles, or individuals, enabling businesses to improve operational efficiency and customer satisfaction. The growing adoption of IoT devices and the increasing need for real-time visibility in supply chain operations are expected to bolster the demand for real-time location data services.</p&
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The electronic map market is experiencing robust growth, driven by increasing adoption of location-based services (LBS), the proliferation of smartphones and connected devices, and the expanding use of GPS technology across various sectors. The market's value, estimated at $15 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $45 billion by 2033. Key drivers include the rising demand for precise navigation systems in the automotive industry, the surge in e-commerce and delivery services relying on efficient route optimization, and the growing importance of location intelligence for urban planning and resource management. Furthermore, advancements in mapping technologies, such as 3D mapping and augmented reality (AR) integration, are further fueling market expansion. While data security and privacy concerns represent a potential restraint, the overall outlook remains positive, fueled by continuous technological advancements and increasing reliance on location data across numerous applications. The market is segmented by various factors, including map type (2D, 3D, etc.), application (navigation, GIS, etc.), and end-user (automotive, government, etc.). Leading companies like ESRI, Google, TomTom, and HERE Technologies are actively shaping the market landscape through innovation and strategic partnerships. Regional variations in market penetration exist, with North America and Europe currently holding a significant share. However, Asia-Pacific is expected to witness the fastest growth due to rapid urbanization and increasing smartphone penetration. The competitive landscape is characterized by both established players and emerging technology companies vying for market share through technological advancements, improved data accuracy, and enhanced user experience. The forecast period of 2025-2033 promises significant opportunities for growth, driven by the continuous integration of electronic maps into various aspects of daily life and the emerging importance of location data in diverse industries.
description: This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (pamf.ps, pamf.pdf, pamf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.; abstract: This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (pamf.ps, pamf.pdf, pamf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global 3D map system market size was valued at approximately $4.2 billion in 2023 and is projected to reach around $11.3 billion by 2032, growing at a robust CAGR of 11.5% during the forecast period. The increasing demand for advanced mapping solutions across various sectors such as automotive, urban planning, and infrastructure development is a significant growth factor propelling this market. The adoption of 3D maps, driven by technological advancements and the need for precise spatial data, is transforming how industries manage and utilize geospatial information.
One of the primary growth factors of the 3D map system market is the burgeoning demand within the automotive industry. The rise of autonomous and connected vehicles relies heavily on high-precision 3D mapping systems to ensure safety and efficiency. As vehicles become increasingly sophisticated, the need for accurate terrain and environmental data becomes paramount, driving the integration of these systems into modern automobiles. Additionally, the evolution of smart cities and infrastructure projects around the globe has necessitated the use of 3D maps for planning and management, further fueling market growth.
The aerospace and defense sectors are also major proponents of 3D map systems, utilizing them for navigation, simulation, and mission planning. The accuracy and detailed visualization provided by these maps are indispensable in military applications, where precise terrain understanding can critically impact operations and strategy development. Furthermore, the expansion of drone technology has increased the demand for 3D mapping solutions, as these aerial vehicles increasingly rely on detailed geospatial data to perform a variety of tasks ranging from surveillance to environmental monitoring.
In urban planning, the use of 3D mapping systems has gained significant traction due to their ability to provide a comprehensive view of urban landscapes, aiding in efficient planning and decision-making. These systems enable planners to visualize and simulate different developmental scenarios, assessing their impact on the environment and city infrastructure. Such capabilities are invaluable in developing sustainable urban areas that can accommodate growing populations while minimizing ecological footprints. Moreover, as environmental concerns and regulatory pressures increase, the use of 3D maps is becoming more prevalent in infrastructure planning and development.
Regionally, North America dominates the 3D map system market, driven by technological innovation and high adoption rates across various industries. The presence of key market players and substantial investment in research and development further bolster the region's dominance. Meanwhile, the Asia Pacific is experiencing the fastest growth, attributed to rapid urbanization and infrastructure development, particularly in countries like China and India. The implementation of smart city initiatives and the expansion of automotive and defense sectors are significant factors contributing to the region's market expansion.
The component segment of the 3D map system market is subdivided into software, hardware, and services, each playing a pivotal role in the overall functionality and utilization of 3D mapping technologies. Software components are at the core of the 3D map system market, offering essential functionalities for creating, editing, and managing 3D spatial data. The demand for sophisticated software solutions is rising as users seek advanced features such as real-time data processing, analytics, and augmented reality integration. These software solutions enable various applications, from navigation and simulation to geospatial data analysis, making them indispensable across multiple industries.
Hardware components include the physical devices and infrastructure required to capture, store, and process 3D mapping data. This includes GPS devices, LiDAR systems, and high-resolution cameras, which are critical for accurate data acquisition. The hardware segment is experiencing growth due to technological advances that enhance data capture accuracy and efficiency. The integration of artificial intelligence and machine learning with hardware components further improves the capability of 3D mapping systems, enabling automated data processing and real-time applications.
The services component encompasses the various support and maintenance services essential for the optimal functioning of 3D map systems. These services include system integration,
Saint Kitts and Nevis World-Wide Human Geography Data (WWHGD) Hurricane Irma data
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global map drawing services market size was valued at approximately $1.2 billion in 2023 and is projected to reach $2.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.1% during the forecast period. This growth can be attributed to the increasing demand for precise and customized mapping solutions across various industries such as urban planning, environmental management, and tourism.
One of the primary growth factors of the map drawing services market is the rapid advancement in Geographic Information Systems (GIS) technology. The integration of advanced GIS tools allows for the creation of highly accurate and detailed maps, which are essential for urban planning and environmental management. Additionally, the growing emphasis on smart city initiatives worldwide has led to an increased need for customized mapping solutions to manage urban development and infrastructure efficiently. These technological advancements are not only improving the quality of map drawing services but are also making them more accessible to a broader range of end-users.
Another significant growth factor is the rising awareness and adoption of map drawing services in the tourism sector. Customized maps are increasingly being used to enhance the tourist experience by providing detailed information about destinations, routes, and points of interest. This trend is particularly prominent in regions with rich cultural and historical heritage, where detailed thematic maps can offer tourists a more immersive and informative experience. Furthermore, the digitalization of the tourism industry has made it easier to integrate these maps into various applications, further driving the demand for map drawing services.
Environmental management is another key area driving the growth of the map drawing services market. With the increasing focus on sustainable development and environmental conservation, there is a growing need for accurate maps to monitor natural resources, track changes in land use, and plan conservation efforts. Map drawing services provide essential tools for environmental scientists and policymakers to analyze and visualize data, aiding in better decision-making and management of natural resources. The rising environmental concerns globally are expected to continue driving the demand for these services.
From a regional perspective, North America is anticipated to hold a significant share of the map drawing services market due to the high adoption rate of advanced mapping technologies and the presence of major market players in the region. Furthermore, the region's focus on smart city projects and environmental conservation initiatives is expected to fuel the demand for map drawing services. Meanwhile, the Asia Pacific region is projected to witness the highest growth rate, driven by rapid urbanization, industrialization, and the growing need for efficient infrastructure planning and management.
The map drawing services market is segmented into several service types, including custom map drawing, thematic map drawing, topographic map drawing, and others. Custom map drawing services cater to specific client needs, offering tailored mapping solutions for various applications. This segment is expected to witness significant growth due to the increasing demand for personalized maps in sectors such as urban planning, tourism, and corporate services. Businesses and government agencies are increasingly relying on custom maps to support their operations, leading to the expansion of this segment.
Thematic map drawing services focus on creating maps that highlight specific themes or topics, such as population density, climate patterns, or economic activities. These maps are particularly useful for educational purposes, research, and community planning. The growing emphasis on data-driven decision-making and the need for visual representation of complex datasets are driving the demand for thematic maps. Additionally, thematic maps play a crucial role in public health, disaster management, and policy formulation, contributing to the segment's growth.
Topographic map drawing services offer detailed representations of physical features of a landscape, including elevation, terrain, and landforms. These maps are essential for various applications, such as environmental management, military ope
description: All of the ERS mapping applications, such as the Food Environment Atlas and the Food Access Research Atlas, use map services developed and hosted by ERS as the source for their map content. These map services are open and freely available for use outside of the ERS map applications. Developers can include ERS maps in applications through the use of the map service REST API, and desktop GIS users can use the maps by connecting to the map server directly.; abstract: All of the ERS mapping applications, such as the Food Environment Atlas and the Food Access Research Atlas, use map services developed and hosted by ERS as the source for their map content. These map services are open and freely available for use outside of the ERS map applications. Developers can include ERS maps in applications through the use of the map service REST API, and desktop GIS users can use the maps by connecting to the map server directly.
This data set provides four land cover and ecosystem classification maps for northern Alaska. The maps were produced for several projects and from different data sources including Landsat imagery and existing maps and models, and cover a range of ecosystem and vegetation classes. The data used to derive the maps covered the period 1976-08-04 to 2014-09-01.
This web map depicts GIS data for known Stormwater Infrastructure in the City of SeaTac, Washington. The information is based on the best available knowledge collected from construction as-builts and field inspections, with a focus on mapping features in the public right-of-way. The stormwater infrastructure contains the following datasets: discharge points, catch basins and manholes, pipes and ditches, misc structures, water quality facilities points and polygons, and access risers. The data is being continually updated as newer information becomes available.Incorporated in February 1990, the City of SeaTac is located in the Pacific Northwest, approximately midway between the cities of Seattle and Tacoma in the State of Washington. SeaTac is a vibrant community, economically strong, environmentally sensitive, and people-oriented. The City boundaries surround the Seattle-Tacoma International Airport, (approximately 3 square miles in area) which is owned and operated by the Port of Seattle. For additional information regarding the City of SeaTac, its people, or services, please visit https://www.seatacwa.gov. For additional information regarding City GIS data or maps, please visit https://www.seatacwa.gov/our-city/maps-and-gis.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Digital HD Map market is experiencing robust growth, projected to reach $1558.9 million in 2025 and exhibiting a remarkable Compound Annual Growth Rate (CAGR) of 24.4% from 2025 to 2033. This expansion is driven by the increasing demand for precise location data across various sectors. The automotive industry, particularly autonomous vehicles, is a major catalyst, relying heavily on highly detailed and accurate maps for navigation and safety features. Furthermore, the burgeoning use of augmented reality (AR) and virtual reality (VR) applications, coupled with the expanding smart city initiatives globally, fuels the market's growth trajectory. The rise of advanced driver-assistance systems (ADAS) and the integration of digital maps into connected car platforms also contribute significantly to this market's expansion. Competition within the market is fierce, with established players like Google, TomTom, and HERE Technologies competing alongside emerging innovative companies. The market segmentation by map type (2D HD Map, 3D HD Map) and application (Commercial Use, Military Use, Others) reflects the diverse range of applications and associated technological advancements shaping this dynamic landscape. Different regions contribute varying levels of market share, with North America and Asia-Pacific anticipated to lead due to significant technological advancements and higher adoption rates. The market's growth is not without its challenges. Data acquisition and maintenance costs remain a significant hurdle, especially for maintaining the accuracy and timeliness of high-resolution map data. Ensuring data security and privacy, particularly with the increased use of location data in various applications, presents another substantial challenge. Regulatory frameworks governing the use and collection of such data vary across different geographies, creating complexities for businesses operating internationally. Despite these challenges, the long-term prospects for the Digital HD Map market remain positive, driven by continuous technological innovations, increasing investment in autonomous driving technologies, and the expanding need for precise location intelligence across diverse industry verticals. The market is expected to see further consolidation through mergers and acquisitions as companies strive to enhance their capabilities and market share.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of San Francisco map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of San Francisco map area data layers. Data layers are symbolized as shown on the associated map sheets.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.