Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of population level and growth rate for the Abuja, Nigeria metro area from 1950 to 2025.
Estimate population figures at state administrative level and different age groups
Nigeria's population structure reveals a youthful demographic, with those aged **** years comprising the largest age group compared to the total of those between the ages of 30 and 84 years. The majority of the young population are men. This demographic trend has significant implications for Nigeria's future, particularly in terms of economic development and social services. It has the potential to offer a large future workforce that could drive economic growth if it is adequately educated and employed. However, without sufficient investment in health, education, and job creation, this youth bulge could strain public resources and fuel unemployment and social unrest. Poverty challenges amid population growth Despite Nigeria's large youth population, the country faces substantial poverty challenges. This is largely due to its youth unemployment rate, which goes contrary to the expectation that the country’s large labor force would contribute to employment and the economic development of the nation. In 2022, an estimated **** million Nigerians lived in extreme poverty, defined as living on less than **** U.S. dollars a day. This number is expected to rise in the coming years, indicating a growing disparity between population growth and economic opportunities. The situation is particularly dire in rural areas, where **** million people live in extreme poverty compared to *** million in urban centers. Linguistic and ethnic diversity Nigeria's population is characterized by significant linguistic and ethnic diversity. Hausa is the most commonly spoken language at home, used by ** percent of the population, followed by Yoruba at ** percent and Igbo at ** percent. This linguistic variety reflects Nigeria's complex ethnic composition, with major groups including Hausa, Yoruba, Igbo, and Fulani. English, the country's official language, serves as the primary language of instruction in schools, promoting literacy across diverse communities.
Populated place − place or area with clustered or scattered buildings and a permanent human population (city, settlement, town, village) and by definition has no legal boundaries
The primary mission of the 2006 Population and Housing Census (PHC) of Nigeria was to provide data for policy-making, evidence-based planning and good governance. The Government at all tiers, researchers, the academia, civil society organizations and the international agencies will find the sets of socio-demographic data useful in formulating developmental policies and planning. The 2006 data will certainly provide benchmarks for monitoring the Millennium Development Goals (MDGs). Enumeration in the 2006 PHC was conducted between March 21st and 27th 2006. It was designed to collect information on the quality of the population and housing, under the following broad categories: demographic and social, education, disability, household composition, economic activity, migration, housing and amenities, mortality and fertility. The results of the exercise are being released as per the Commission's Tabulation Plan which began with the release of the total enumerated persons by administrative areas in the country in the Official Gazette of the Federal Republic of Nigeria No.2, Vol 96 of February 2,2009 and followed with the release of Priority Tables that provide some detailed characteristics of the population of Nigeria by State and LGA.
National
Individuals Households
Census/enumeration data [cen]
Face-to-face [f2f]
Census 2006 Processing: The Technology and Methodology:-
Unlike the data capture method used for the country’s previous censuses, where information from the census forms are typed into the computer system, data capture for census 2006 was carried out by OMR/OCR/ICR systems where questionnaires are scanned through high speed optical scanners. The choice of the scanning system was because it is faster and more accurate than the data keying method.
OMR/OCR/ICR Technology
Definition of terms
Processing Procedures of Census 2006 at the DPCs:- Data processing took place in the Commission’s seven (7) Data Processing Centres located in different geographical zones in the country. There was absolute uniformity in the processing procedures in the seven DPCs.
(a) Questionnaire Retrieval/Archiving Questionnaires from the fields were taken directly from the Local Government Areas to designated DPCs. The forms on arrival at the DPCs were counted, archived and labeled. Retrieval of the questionnaires at the DPCs were carried out based on the EA frame received from the Cartography Department. Necessary Transmittal Forms are completed on receipt of the Forms at the DPCs. The Transmittal Forms are also used to keep track of questionnaires movement within the DPC.
(b) Forms Preparation The scanning machine has been designed to handle A4 size paper. And the Census form being twice that size has to be split into two through the dotted lines at the middle of the form. This forms preparation procedure is to get the questionnaires, for each Enumeration Areas (EAs), ready for scanning. There is a Batch Header to identify each batch.
(c) Scanning Each Batch on getting to the Scanning Room was placed on joggers (a vibrating machine)to properly align the forms, and get rid of dust or particles that might be on the forms.
The forms are thereafter fed into the scanner. There were security codes in form of bar codes on each questionnaire to identify its genuineness. There was electronic editing and coding for badly coded or poorly shaded questionnaires by the Data Editors. Torn, stained or mutilated forms are rejected by the scanner. These categories of forms were later manually keyed into the system.
Re-archiving of Scanned Forms:- Scanned forms were placed in their appropriate marked envelopes in batches, and thereafter returned to the Archiving Section for re-archiving.
Data Output from the Scanning Machine:- The OMR/OCR Software interprets the output from the scanner and translates it into an XML file from where it is further translated into the desired ASCII output that is compatible for use by the CSPro Package for further processing and tabulation.
Data back-up and transfer:- After being sure that the data are edited for each EA batch in an LGA, data then was exported to the SAN (Storage Area Network) of the Server. Two copies of images of the questionnaires for each EA copied to the LTO tapes as backup and then transferred to the Headquarters. The ASCII data files for each LGA are zipped and encrypted, and thereafter transfer to the Data Validation Unit (DVU) at the Headquarters in Abuja.
Data collation and validation:- The Data Validation Unit at the Headquarters was responsible for collating these data into EAs, LGAs, States and National levels. The data are edited/validated for consistency errors and invalid entries. The Census and Survey Processing (CSPro) software is used for this process. The edited, and error free data are thereafter processed into desired tables.
Activities of the Data Validation unit (DVU):-
Decryption of each LGA Data File Concatenation/merging of Data Files Check each EA batch file for EA completeness within an LGA and State Check for File/Data Structure Check for Range and Invalid Data items Check for Blank and empty questionnaire Check for inter and intra record consistency Check for Skip Patterns Perform Data Validation and Imputation Generate Statistics Report of each function/activity Generate Statistical Tables on LGA, State and National levels.
Nigeria is the African country with the largest population, counting over 230 million people. As of 2024, the largest city in Nigeria was Lagos, which is also the largest city in sub-Saharan Africa in terms of population size. The city counts more than nine million inhabitants, whereas Kano, the second most populous city, registers around 3.6 million inhabitants. Lagos is the main financial, cultural, and educational center in the country. Where Africa’s urban population is booming The metropolitan area of Lagos is also among the largest urban agglomerations in the world. Besides Lagos, another most populated citiy in Africa is Cairo, in Egypt. However, Africa’s urban population is booming in other relatively smaller cities. For instance, the population of Bujumbura, in Burundi, could grow by 123 percent between 2020 and 2035, making it the fastest growing city in Africa and likely in the world. Similarly, Zinder, in Niger, could reach over one million inhabitants by 2035, the second fastest growing city. Demographic urban shift More than half of the world’s population lives in urban areas. In the next decades, this will increase, especially in Africa and Asia. In 2020, over 80 percent of the population in Northern America was living in urban areas, the highest share in the world. In Africa, the degree of urbanization was about 40 percent, the lowest among all continents. Meeting the needs of a fast-growing population can be a challenge, especially in low-income countries. Therefore, there will be a growing necessity to implement policies to sustainably improve people’s lives in rural and urban areas.
A populated place consisting of more than 15 houses − place or area with clustered or scattered buildings and a permanent human population (city
National
18 of the 37 states in Nigeria were selected using procedures described in the methodology report
Sample survey data [ssd]
A. Sampling Frame The sampling frame was the 2006 National Population Census. For administrative purposes, Nigeria has 36 states and the Federal Capital Territory. These states are grouped into six geopolitical zones - the North Central, North East, North West, South East, South South and South West. The states in turn are divided into 776 Local Governments. The demographic and political characteristics of the states vary considerably. For example, the number of component local government areas in the states ranges from 8 in Bayelsa State (in the South South) to 44 in Kano State (in the North West). Likewise state populations vary widely from 1.41 million in the Abuja Federal Capital Territory to 9.38 million in Kano State. The National Bureau of Statistics splits the country further into 23, 070 enumeration areas (EAs). While the enumeration areas are equally distributed across the local government areas, with each local government area having 30 enumeration areas, the differences in the number of local government areas across states implies that there are also huge differences in the number of enumeration areas across states. Appendix table 1 summarizes the population according to the 2006 population census (in absolute and proportionate numbers), number of local government areas, and number of enumeration areas in each state .
Given the above, a stratified random sampling technique was thought to be needed to select areas according to population and the expected prevalence of migrants. The National Bureau of Statistics (NBS) provided a randomly selected set of enumeration areas and households spread across all states in the Federation from the 2006 sampling frame. Every state in Nigeria has three senatorial zones (often referred to as North, Central and South or East, Central and West). The NBS sample enumeration areas were distributed such that within each state, local government areas from each senatorial zones were included in the sample, with Local Governments in each state nearly evenly distributed between rural and urban areas. In all, a total of 3188 enumeration areas were selected. These enumeration areas were unevenly spread across States; some states in the North West (Kano, Katsina, and Jigawa), and a few in the South South (Akwa Ibom and Delta) had over 100 enumeration areas selected while others such as Imo and Abia in the South East, and Borno, Gombe and Taraba in the North East, had as few as 20 enumeration areas selected. This selection partially reflected the relative population distribution and number of Local Government Areas in the component states. Annex Table B shows details of the states and geopolitical regions, their shares in population of the country, the number of Local Government Areas and enumeration areas in each state and the number of enumeration areas given in the NBS list that formed the frame for the study.
B. The Sample for the Migration Survey
a. Sample Selection of States, Local Governments and Enumeration Areas Originally, the intention was to have proportionate allocation across all states, using the population of each state in the 2006 Census to select the number of households to be included in the sample. But it was later recognized that this would not yield enough migrant households, particularly those with international migrants, especially as the total number of households that could likely be covered in the sample to was limited to 2000. Consequently, a disproportionate sampling approach was adopted, with the aim of oversampling areas of the country with more migrants. According to Bilsborrow (2006), this approach becomes necessary because migrants are rare populations for which a distinct disproportionate sampling procedure is needed to ensure they are adequately captured. Given the relative rareness of households with out-migrants to international destinations within the 10 year reference period (selected by the World Bank for all countries) prior to the planned survey, sampling methods appropriate for sampling rare elements were desirable, specifically, stratified sampling with two-phase sampling at the last stage.
Establishing the strata would require that there be previous work, say from the most recent Census, to determine migration incidence among the states. However, the needed census data could not be obtained from either the National Bureau of Statistics or the National Population Commission. Therefore, the stratification procedure had to rely on available literature, particularly Hernandez-Coss and Bun (2007), Agu (2009) and a few other recent, smaller studies on migration and remittances in Nigeria. Information from this literature was supplemented by expert judgement about migration from team members who had worked on economic surveys in Nigeria in the past. Information from the literature and the expert assessment indicated that migration from households is considerably higher in the South than in the North. Following this understanding, the states were formed into two strata- those with high and those with low incidence of migration. In all, 18 States (16 in the South and 2 in the North) were put into the high migration incidence stratum while 19 states (18 in the North and 1 in the South) were classified l into the low migration incidence stratum (column C of Appendix Table 1).
The Aggregate population of the 18 states in the high migration incidence stratum was 67.04 million, spread across 10,850 Enumeration areas. Thus, the mean population of an EA in the high migration stratum was 6179. In turn, the aggregate population of the 19 states in the low migration incidence stratum was 72.95 million spread across 12,110 EAs yielding a mean EA population of 6024. These numbers were close enough to assume the mean population of EAs was essentially the same. To oversample states in the high stratum, it was decided to select twice as high a proportion of the states as in the low stratum. To further concentrate the sample and make field work more efficient in being oriented to EAs more likely to have international migrants, we decided to select randomly twice as many LGAs in each state in the high stratum states as in the low stratum states.
Thus, 12 states were randomly selected with probabilities of selection proportionate to the population size of each state (so states with larger populations were accordingly more likely to fall in the sample) from the high stratum states. Then two LGAs were randomly selected from each sample state and 2 EAs per sample LGA (one urban, one rural) to yield a total of 12 x 2 x 2 or 48 EAs in the high stratum states. For the low stratum, 6 states were randomly selected. From each of these, 1 LGA was randomly picked and 2 EAs were selected per sample LGA to give a total of 6 x 1 x 2 or 12 EAs in the low stratum. This yielded a total of 60 EAs for both strata. Given the expected range of 2000 households to be sampled, approximately 67 households were to be sampled from each local government area or 34 households from each enumeration area.
So far, the discussion has assumed two groups of households - migrant and non-migrant households. However, the study was interested in not just lumping all migrants together, but rather in classifying migrants according to whether their destination was within or outside the country. Migrant households were thus subdivided into those with former household members who were international migrants and those with former household members who were internal migrants. Three strata of households were therefore required, namely:
The selection of states to be included in the sample from both strata was based on Probabilities of Selection Proportional to (Estimated) Size or PPES. The population in each stratum was cumulated and systematic sampling was performed, with an interval of 12.16 million for the low stratum (72.95 million divided by 6 States), and 5.59 million for the high stratum (67.04 million divided by 12 States). This yields approximately double the rate of sampling in the high migration stratum, as earlier explained. Using a random start between 0 and 12.16, the following states were sampled in the low stratum: Niger, Bauchi, Yobe, Kano, Katsina, and Zamfara. In the high stratum, states sampled were Abia, Ebonyi, Imo, Akwa Ibom, Delta, Edo, Rivers, Lagos, Ondo, Osun and Oyo. Given its large population size, Lagos fell into the sample twice. The final sample, with LGAs and EAs moving from North to South (i.e. from the low to the high stratum states) is presented in Table 1 below.
The sample was concentrated in the South since that is where it was expected that more households have international migrants. It was expected that the survey would still also be reasonably representative of the whole country and of both internal migrant and non-migrant households through weighting the data. To this effect, field teams were asked to keep careful track at all stages of the numbers of people and households listed compared to the number in the
The General Household Survey is a brainchild of the National Bureau of Statistics (NBS) and is often referred to as regular survey carried out on quarterly basis by the NBS over the years. In recent times, starting from 2004 to be precise, there is a collaborative effort between the NBS and the CBN in 2004 and 2005 and in 2006 the collaboration incorporated Nigerian Communications commission (NCC). The main reason of for conducting the survey was to enable the collaborating agencies fulfil their mandate in the production of current and credible statistics, to monitor and evaluate the status of the economy and the various government programmes such as the National Economic Empowerment and Development Strategy (NEEDS) and the Millennium Development Goals (MDGs).
The collaborative survey also assured the elimination of conflicts in data generated by the different agencies and ensured a reliable, authentic national statistics for the country.
National
Household
Sample survey data [ssd]
The GHS was implemented as a NISH module. Six replicates were studied per State while three replicates were studied in the FCT, Abuja. With a fixed-take of 10 HUs systematically selected per EA, 600 HUs thus were selected for interview per State and 300 for FCT, Abuja. Hence, nationally, a total of 21,900 HUs drawn from the 2,190 cut across the rural and urban sectors.
The sample design for the survey derives from the National Integrated Survey of Household (NISH) developed by National Bureau of Statistics (NBS). The NISH design employed a replicated sampling design that is technique by which many sample (replicates) were selected independently from a population such that each replicate sample represents the population.
Essentially, the NISH sample design is a 2-stage replicated and rotated cluster sample design with Enumeration Areas (EAs) as first stage sampling unit or Primary Sampling Unit (PSU) and Housing Units the second stage sampling units (secondary sampling units). Generally, for each state of the Federation, the NISH Master Sample is made up of 120 EAs drawn in 12 replicates. A replicate consists of 10 EAs.
The EAs demarcated by the National Population Commission (NpopC) for the 1991 Population Census served as the primary Sample Frame for the design.
Sixty EAs were selected with equal probability from the list of EAs in each state of the federation and 30 EAs for FCT, Abuja. The selected EAs cuts across rural and urban sectors. The study EAs for the collaborative survey were drawn from replicates 7,8,9,10,11 and 12 of the master sample of each state.
In each selected EA, a listing of housing units was carried out. The result provided the frame for the second stage selection. Ten housing units were selected systematically in each EA after the completion of the listing exercise. Thereafter, all the households within the selected HUs were interviewed using GHS questionnaire. Out of the expected 2,190 EAs, 1,883 were studied.
Out of the 21,900 housing units expected to be covered, 18,826 were canvassed.
Variance Estimate (Jackknife Method)
Estimating variances using the Jackknife method will require forming replicate from the full sample by randomly eliminating one sample cluster [Enumeration Area (EA) at a time from a state containing k EAs, k replicated estimates are formed by eliminating one of these, at a time, and increasing the weight of the remaining (k-1) EAs by a factor of k/(k-1). This process is repeated for each EA.
For a given state or reporting domain, the estimate of the variance of a rate, r, is given by k Var(r ) = (Se)2 = 1 S (ri - r)2 k(k-1) i=1
where (Se) is the standard error, k is the number of EAs in the state or reporting domain.
r is the weighted estimate calculated from the entire sample of EAs in the state or reporting domain.
ri = kr - (k - 1)r(i), where
r(i) is the re-weighted estimate calculated from the reduced sample of k-1 EAs.
To obtain an estimate of the variance at a higher level, say, at the national level, the process is repeated over all states, with k redefined to refer to the total number of EAs (as opposed to the number in the states).
Face-to-face [f2f]
The questionnaire for the GHS is a structured questionnaire based on household characteristics with some modifications and additions. The House project module is a new addition and some new questions on ICT. The questionnaires were scaned
This section deals with the characteristics of the socio-economic data of Nigerian population, such as demography, education, employment, health, housing condition, fertility, mortality etc. Demographic factors are both determinants and consequences of economic and social development. It has been shown that the study of demographic variables yield important information on the inventories of human resources that are needed for effective development planning.
The data editing is in 2 phases namely manual editing before the questionnaires were scanned. This involved using editors at the various zones to manually edit and ensure consistency in the information on the questionnaire. The second editing is the computer editing, this is the cleaning of the already scanned data.
On National basis, 85.98 percent response rate was achieved at EA level while 85.96 percent was achieved at housing units level.
The quality control measures were carried out during the survey, essentially to ensure quality of data. There were three levels of supervision involving the supervisors at the first level, CBN staff, NBS State Officers and Zonal Controllers at second level and finally the NBS/NCC Headquarter staff constituting the third level supervision. Field monitoring and quality check exercises were also carried out during the period of data collection as part of the quality control measures.
Populated place − place or area with clustered or scattered buildings and a permanent human population (city, settlement, town, village) and by definition has no legal boundaries
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
(Ed)A. Philips, A.Noah & A. Otoabasi, Fortress of Tents: Dynamics of Population Displacements in Nigeria, Abuja: Brandmore Communication
Populated place − place or area with clustered or scattered buildings and a permanent human population (city, settlement, town, village) and by definition has no legal boundaries
The main objectives of the 2018/19 NLSS are: i) to provide critical information for production of a wide range of socio-economic and demographic indicators, including for benchmarking and monitoring of SDGs; ii) to monitor progress in population's welfare; iii) to provide statistical evidence and measure the impact on households of current and anticipated government policies. In addition, the 2018/19 NLSS could be utilized to improve other non-survey statistical information, e.g. to determine and calibrate the contribution of final consumption expenditures of households to GDP; to update the weights and determine the basket for the national Consumer Price Index (CPI); to improve the methodology and dissemination of micro-economic and welfare statistics in Nigeria.
The 2018/19 NLSS collected a comprehensive and diverse set of socio-economic and demographic data pertaining to the basic needs and conditions under which households live on a day to day basis. The 2018/19 NLSS questionnaire includes wide-ranging modules, covering demographic indicators, education, health, labour, expenditures on food and non-food goods, non-farm enterprises, household assets and durables, access to safety nets, housing conditions, economic shocks, exposure to crime and farm production indicators.
National coverage
Households
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
SAMPLING PROCEDURE The 2018/19 NLSS sample is designed to provide representative estimates for the 36 states and the Federal Capital Territory (FCT), Abuja. By extension. The sample is also representative at the national and zonal levels. Although the sample is not explicitly stratified by urban and rural areas, it is possible to obtain urban and rural estimates from the NLSS data at the national level. At all stages, the relative proportion of urban and rural EAs as has been maintained. Before designing the sample for the 2018/19 NLSS, the results from the 2009/10 HNLSS were analysed to extract the sampling properties (variance, design effect, etc.) and estimate the required sample size to reach a desired precision for poverty estimates in the 2018/19 NLSS.
EA SELECTION: The sampling frame for the 2018/19 NLSS was based on the national master sample developed by the NBS, referred to as the NISH2 (Nigeria Integrated Survey of Households 2). This master sample was based on the enumeration areas (EAs) defined for the 2006 Nigeria Census Housing and Population conducted by National Population Commission (NPopC). The NISH2 was developed by the NBS to use as a frame for surveys with state-level domains. NISH2 EAs were drawn from another master sample that NBS developed for surveys with LGA-level domains (referred to as the “LGA master sample”). The NISH2 contains 200 EAs per state composed of 20 replicates of 10 sample EAs for each state, selected systematically from the full LGA master sample. Since the 2018/19 NLSS required domains at the state-level, the NISH2 served as the sampling frame for the survey. Since the NISH2 is composed of state-level replicates of 10 sample EAs, a total of 6 replicates were selected from the NISH2 for each state to provide a total sample of 60 EAs per state. The 6 replicates selected for the 2018/19 NLSS in each state were selected using random systematic sampling. This sampling procedure provides a similar distribution of the sample EAs within each state as if one systematic sample of 60 EAs had been selected directly from the census frame of EAs.
A fresh listing of households was conducted in the EAs selected for the 2018/19 NLSS. Throughout the course of the listing, 139 of the selected EAs (or about 6%) were not able to be listed by the field teams. The primary reason the teams were not able to conduct the listing in these EAs was due to security issues in the country. The fieldwork period of the 2018/19 NLSS saw events related to the insurgency in the north east of the country, clashes between farmers and herdsman, and roving groups of bandits. These events made it impossible for the interviewers to visit the EAs in the villages and areas affected by these conflict events. In addition to security issues, some EAs had been demolished or abandoned since the 2006 census was conducted. In order to not compromise the sample size and thus the statistical power of the estimates, it was decided to replace these 139 EAs. Additional EAs from the same state and sector were randomly selected from the remaining NISH2 EAs to replace each EA that could not be listed by the field teams. This necessary exclusion of conflict affected areas implies that the sample is representative of areas of Nigeria that were accessible during the 2018/19 NLSS fieldwork period. The sample will not reflect conditions in areas that were undergoing conflict at that time. This compromise was necessary to ensure the safety of interviewers.
HOUSEHOLD SELECTION: Following the listing, the 10 households to be interviewed were selected from the listed households. These households were selected systemically after sorting by the order in which the households were listed. This systematic sampling helped to ensure that the selected households were well dispersed across the EA and thereby limit the potential for clustering of the selected households within an EA. Occasionally, interviewers would encounter selected households that were not able to be interviewed (e.g. due to migration, refusal, etc.). In order to preserve the sample size and statistical power, households that could not be interviewed were replaced with an additional randomly selected household from the EA. Replacement households had to be requested by the field teams on a case-by-case basis and the replacement household was sent by the CAPI managers from NBS headquarters. Interviewers were required to submit a record for each household that was replaced, and justification given for their replacement. These replaced households are included in the disseminated data. However, replacements were relatively rare with only 2% of sampled households not able to be interviewed and replaced.
Although a sample was initially drawn for Borno state, the ongoing insurgency in the state presented severe challenges in conducting the survey there. The situation in the state made it impossible for the field teams to reach large areas of the state without compromising their safety. Given this limitation it was clear that a representative sample for Borno was not possible. However, it was decided to proceed with conducting the survey in areas that the teams could access in order to collect some information on the parts of the state that were accessible.
The limited area that field staff could safely operate in in Borno necessitated an alternative sample selection process from the other states. The EA selection occurred in several stages. Initially, an attempt was made to limit the frame to selected LGAs that were considered accessible. However, after selection of the EAs from the identified LGAs, it was reported by the NBS listing teams that a large share of the selected EAs were not safe for them to visit. Therefore, an alternative approach was adopted that would better ensure the safety of the field team but compromise further the representativeness of the sample. First, the list of 788 EAs in the LGA master sample for Borno were reviewed by NBS staff in Borno and the EAs they deemed accessible were identified. The team identified 359 EAs (46%) that were accessible. These 359 EAs served as the frame for the Borno sample and 60 EAs were randomly selected from this frame. However, throughout the course of the NLSS fieldwork, additional insurgency related events occurred which resulted in 7 of the 60 EAs being inaccessible when they were to be visited. Unlike for the main sample, these EAs were not replaced. Therefore, 53 EAs were ultimately covered from the Borno sample. The listing and household selection process that followed was the same as for the rest of the states.
Computer Assisted Personal Interview [capi]
Two sets of questionnaires – household and community – were used to collect information in the NLSS2018/19. The Household Questionnaire was administered to all households in the sample. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.
Household Questionnaire: The Household Questionnaire provides information on demographics; education; health; labour; food and non-food expenditure; household nonfarm income-generating activities; food security and shocks; safety nets; housing conditions; assets; information and communication technology; agriculture and land tenure; and other sources of household income.
Community Questionnaire: The Community Questionnaire solicits information on access to transported and infrastructure; community organizations; resource management; changes in the community; key events; community needs, actions and achievements; and local retail price information.
CAPI: The 2018/19 NLSS was conducted using the Survey Solutions Computer Assisted Person Interview (CAPI) platform. The Survey Solutions software was developed and maintained by the Development Economics Data Group (DECDG) at the World Bank. Each interviewer and supervisor was given a tablet which they used to
Populated place − place or area with clustered or scattered buildings and a permanent human population (city, settlement, town, village) and by definition has no legal boundaries
The 2013 Nigeria Demographic and Health Survey (NDHS) was designed to provide data to monitor the population and health situation in Nigeria with an explicit goal of providing reliable information about maternal and child health and family planning services. The primary objective of the 2013 NDHS was to provide up-to-date information on fertility levels, marriage, fertility preferences, awareness and use of family planning methods, child feeding practices, nutritional status of women and children, adult and childhood mortality, awareness and attitudes regarding HIV/AIDS, and domestic violence. This information is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving health and family planning services in the country.
National coverage
Sample survey data [ssd]
Sample Design The sample for the 2013 NDHS was nationally representative and covered the entire population residing in non-institutional dwelling units in the country. The survey used as a sampling frame the list of enumeration areas (EAs) prepared for the 2006 Population Census of the Federal Republic of Nigeria, provided by the National Population Commission. The sample was designed to provide population and health indicator estimates at the national, zonal, and state levels. The sample design allowed for specific indicators to be calculated for each of the six zones, 36 states, and the Federal Capital Territory, Abuja.
Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into localities. In addition to these administrative units, during the 2006 population census, each locality was subdivided into census enumeration areas. The primary sampling unit (PSU), referred to as a cluster in the 2013 NDHS, is defined on the basis of EAs from the 2006 EA census frame. The 2013 NDHS sample was selected using a stratified three-stage cluster design consisting of 904 clusters, 372 in urban areas and 532 in rural areas. A representative sample of 40,680 households was selected for the survey, with a minimum target of 943 completed interviews per state.
A complete listing of households and a mapping exercise were carried out for each cluster from December 2012 to January 2013, with the resulting lists of households serving as the sampling frame for the selection of households. All regular households were listed. The NPC listing enumerators were trained to use Global Positioning System (GPS) receivers to calculate the coordinates of the 2013 NDHS sample clusters.
A fixed sample take of 45 households were selected per cluster. All women age 15-49 who were either permanent residents of the households in the 2013 NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed. In a subsample of half of the households, all men age 15-49 who were either permanent residents of the households in the sample or visitors present in the households on the night before the survey were eligible to be interviewed. Also, a subsample of one eligible woman in each household was randomly selected to be asked additional questions regarding domestic violence.
For further details on sample size and design, see Appendix B of the final report.
Face-to-face [f2f]
Three questionnaires were used in the 2013 NDHS: the Household Questionnaire, the Woman’s Questionnaire, and the Man’s Questionnaire.
The Household Questionnaire was used to list all of the usual members of and visitors to the selected households. Some basic information was collected on the characteristics of each person listed, including age, sex, marital status, education, and relationship to the head of the household. Information on other characteristics of household members was collected as well, including current school attendance and survivorship of parents among those under age 18. If a child in the household had a parent who was sick for more than three consecutive months in the 12 months preceding the survey or a parent who had died, additional questions related to support for orphans and vulnerable children were asked. Furthermore, if an adult in the household was sick for more than three consecutive months in the 12 months preceding the survey or an adult in the household had died, questions were asked relating to support for sick people or people in households where a member had died.
The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of water; type of toilet facilities; materials used for the floor of the house; ownership of various durable goods; ownership of agricultural land; ownership of livestock, farm animals, or poultry; and ownership and use of mosquito nets and long-lasting insecticidal nets. The Household Questionnaire was further used to record height and weight measurements for children age 0-59 months and women age 15-49. In addition, data on the age and sex of household members in the Household Questionnaire were used to identify women and men who were eligible for individual interviews.
The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following main topics: • Background characteristics (age, religion, education, literacy, media exposure, etc.) • Reproductive history and childhood mortality • Knowledge, source, and use of family planning methods • Fertility preferences • Antenatal, delivery, and postnatal care • Breastfeeding and infant feeding practices • Child immunisation and childhood illnesses • Marriage and sexual activity • Women’s work and husbands’ background characteristics • Malaria prevention and treatment • Women’s decision making • Awareness of AIDS and other sexually transmitted infections • Maternal mortality • Domestic violence
The Man’s Questionnaire was administered to all men age 15-49 in every second household in the 2013 NDHS sample. The Man’s Questionnaire collected much of the same information found in the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health or nutrition.
The processing of the 2013 NDHS data began simultaneously with the fieldwork. Completed questionnaires were edited in the field immediately by the field editors and checked by the supervisors before being dispatched to the data processing centre in Abuja. The questionnaires were then edited and entered by 26 data processing personnel specially trained for this task. Data were entered using the CSPro computer package, and all data were entered twice to allow 100 percent verification. The concurrent processing of the data offered a distinct advantage because of the assurance that the data were error free and authentic. Moreover, the double entry of data enabled easy comparisons and identification of errors and inconsistencies. Inconsistencies were resolved by tallying results with the paper questionnaire entries. Secondary editing of the data was completed in the last week of July 2013. The final cleaning of the data set was carried out by the ICF data processing specialist and completed in August.
A total of 40,320 households were selected from 896 sample points, of which 38,904 were found to be occupied at the time of the fieldwork. Of the occupied households, 38,522 were successfully interviewed, yielding a household response rate of 99 percent. In view of the security challenges in the country, this response rate is highly encouraging and appears to be the result of a well-coordinated team effort.
In the interviewed households, a total of 39,902 women age 15-49 were identified as eligible for individual interviews, and 98 percent of them were successfully interviewed. Among men, 18,229 were identified as eligible for interviews, and 95 percent were successfully interviewed. As expected, response rates were slightly lower in urban areas than in rural areas.
Note: See summarized response rates by residence (urban/rural) in Table 1.2 of the survey report.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2013 Nigeria DHS (NDHS) to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2013 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error
The Nigerbus is a syndicated omnibus survey using the quantitative data collection in gathering its information. Since inception in 1980 it has proven to be a reliable tool for keeping abreast on market development and as well as tracking brand performance. The sample is usually over 5,000 and is drawn from the population aged 18 and above. We interview male and female at the ratio of 50:50 that is, 2500 males and 2500 females and this quota is further stratified by age. The interview is conducted in all the 36 states of the Federation and the Federal Capital Territory, Abuja. Each state's sample allocation is proportionate to its size in the 1991 Population Census Results.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Households and persons
UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: No - Special populations: No
UNIT DESCRIPTIONS: - Households: A household consists of a person or a group of persons living together under the same roof or in the same building/compound, who eat from the same pot and recognize themselves as a unit. - Group quarters: A housing unit occupied largely by persons not related by blood. Examples include school hostels where children from different parents live during the school session, hotels where travelers and holidaymakers or people on business stay for a short period of time. Institutional housing units usually contain more rooms than residential buildings.
Census/enumeration data [cen]
MICRODATA SOURCE: National Bureau of Statistics
SAMPLE DESIGN: The sample followed a two-stage, replicated and rotable design in which enumeration areas (EAs) demarcated for the 1991 Population Census served as the primary sampling units and housing units (HUs) as the secondary sampling units. Sixty EAs per state and 30 EAs in the Federal Capital Territory, Abuja were randomly selected. In each EA, 10 households were selected randomly from a list of all households in the EA. In total, 21,900 housing units from 2,190 enumeration areas were included in the sample. The selected EAs were distributed across urban and rural areas.
SAMPLE UNIT: Enumeration area and housing unit
SAMPLE FRACTION: 0.1%
SAMPLE SIZE (person records): 83,700
Face-to-face [f2f]
A single form with eleven sections: A) Housing unit identification and conditions, B)Persons present in the household, C) Usual resident absent, D) Contraceptive prevalence, E) Births in the last 12 months, F) National programme on immunization, G) Child nutrition, H) Deaths in the last 12 months, I) Health, J) Householkd enterprises, and K) Household expenditure.
The GHS is a cross-sectional survey of 22,000 households throughout the country. The panel component (GHS-Panel) is now being applied to 5,000 households of the GHS and covers multiple agricultural activities. The focus of this panel component is to improve data from the agriculture sector and link this to other facets of household behaviour and characteristics. The GHS-Panel drew heavily on the HNLSS and the NASS to create a new survey instrument and method to shed light on the role of agriculture in households' economic wellbeing. The NBS implemented the first stage (Post Planting) of the first wave of the GHS-Panel in 2010. This panel is a subset of the full GHS (or GHS-Cross Section) that will be finished in 2011.) It is envisaged that the GHS-Panel will be carried out every two years while the GHS-Cross Section will be carried out annually.
The specific outputs and outcomes of the revised GHS with panel component are:
National, the survey covered all the 36 states and Federal Capital Territory (FCT).
Households, Individuals, Agricutural plots
Sample survey data [ssd]
Sample Design The GHS-Panel (Post Planting 2010), like all household surveys in the country, is based on the Master Sample Frame, This Frame is based on the 2006 Housing and Population Census conducted by the National Population Commission (NpopC). The census includes approximately 662,000 enumeration areas (EAs) throughout the country. From the census, the Master Frame was constructed at the local government area (LGA). In 668 LGAs, 30 EAs were scientifically selected. The remaining six LGAs are found in FCT, Abuja. Forty EAs were scientifically selected in each of these 6 LGAs. This gives a total of 23,280 EAs selected nationally. This is the Master Frame.
From the Master Frame a master sample frame, called the National Integrated Survey of Households 2007/2012 Master Sample Frame (NISH-MSF) was developed. The NISHMSF was constructed by pooling the LGAs in the Master Frame by state. Thereafter, a systematic sample of 200 EAs was selected with equal probability across all LGAs within the state. Furthermore, the NISH EAs in each state were divided into 20 replicates of 10 EAs each. However, the sample EAs for most national household surveys such as the GHS are based on a sub-sample of the NISH-MSF, selected as a combination of replicates from NISH-MSF frame. For the GHS-Panel, the sample is a subset of the EAs selected for the GHS.
Sample Framework The sample frame includes all thirty-six (36) states of the federation and Federal Capital Territory (FCT), Abuja. Both urban and rural areas were covered and in all, 500 clusters/EAs were canvassed and 5,000 households were interviewed. These samples were proportionally selected in the states such that different states have different samples.
Sample Selection The GHS Panel Survey used a two stage stratified sample selection process.
First Stage The Primary Sampling Units (PSUs) were the Enumeration Areas (EAs). These were selected based on probability proportional to size (PPS) of the total EAs in each state and FCT, Abuja and the total households listed in those EAs.
Second Stage The second stage involved the systematic selection of ten (10) households per EA. This involved obtaining the total number of households listed in a particular EA, and then calculating a Sampling Interval (S.I) by dividing the total households listed by ten (10). The next step is to generate a random start 'r' from the table of random numbers which stands as the 1st selection. The second selection is obtained by adding the sampling interval to the random start. For each of the next selections, the sampling interval was added to the value of the previous selection until the 10th selection is obtained. Determination of the sample size at the household level was based on the experience gained from previous rounds of the GHS, in which 10 HHs per EA are usually selected and give robust estimates.
Face-to-face [f2f]
This survey used concurrent data entry approach. In this method, the fieldwork and data entry were handled by each team assigned to the state. Each team consisted of a field supervisor, 2-4 interviewers and a data entry operator. Immediately after the data were collected in the field by the interviewers and supervisors (the supervisors administered the community questionnaires and collected data on prices), the questionnaires were handed over to the supervisor to be checked and documented. At the end of each day of fieldwork, the questionnaires were then passed to the data entry operator for entry. After the questionnaires were entered, the data entry operator generated an error report which reported issues including out of range values and inconsistencies in the data. The supervisor then checked the report, determined what should be corrected, and decided if the field team needed to revisit the household to obtain additional information. The benefits of this method are that it allows one to: - Capture errors that might have been overlooked by a visual inspection only, - Identify errors early during the field work so that if any correction required a revisit to the household, it could be done while the team was still in the EA
The CSPro software was used to design the specialized data entry program that was used for the data entry of the questionnaires.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mean squares of BC1S1 mapping population evaluated under artificial Striga infestation at Abuja, Mokwa and across locations during the 2018 growing season.
The National Post Measles Campaign Coverage Survey (PMCCS) was conducted following measles campaign targeting children aged 9 and 59 months in conducted in Nigeria between November 2017 and March 2018 in Nigeria. The survey was commissioned by the National Primary Healthcare Development Agency (NPHCDA) and implemented by the National Bureau of Statistics. Technical assistance was provided by the World Health Organization while funding was provided by PMCCS provides information on the children receiving measles vaccination during the measles campaign. PMCCS was carried out from January to April 2018 and covered 6819 households with 10151 children aged between 9 and 59 months. The population sampled for the PMCCS is representative of children aged 9 to 59 months nationally and in all 36 states and FCT- Abuja.
The primary objective of the survey was to determine the coverage of measles vaccination in all states, the Federal Capital Territory, Abuja and nationally. Secondary objectives of the survey were: 1. To stratify SIA coverage estimates by age group (9-11 months, 12-59 months) 2. To stratify SIA coverage estimates by sex 3. To identify key communication channels that were effectively used for the campaign 4. To determine reasons for non-vaccination of eligible children during the campaign 5. To determine occurrence of adverse events following immunization (AEFI) during the campaign 6. To determine the proportion of children receiving the first dose of measles vaccine during the campaign (i.e., previously unvaccinated)
National
The National Post Measles Campaign Coverage Survey (PMCCS) was conducted following measles campaign targeting children aged 9 and 59 months.Parents and caregivers of all children aged between 9 month and 59 months in the selected households were eligible to participate in the survey
Sample survey data [ssd]
PMCCS was based on the National Population Commission master sampling frame based on the 2006 Nigeria Housing and Population Census. The sampling frame developed under the National Integrated Survey of Households (NISH2). Areas of the country that are inaccessible due to security reasons were excluded from the sampling frame including specific Local Government Areas (LGAs) in Borno and Adamawa states. Interpretation of results from these areas should therefore be conducted in light of these exclusions.
A stratified two stage - cluster sampling design was chosen for the 2017/18 PMCCS. Reporting strata were 36 state and FCT- Abuja.
The first stage selection involved the selection of EAs in each state and the FCT (Abuja) from the master sampling frame. A total of 30 EAs were selected from the sampling frame and with the selection probability of each EA was recorded for incorporation into household weights.
Following first stage sampling, household listing was conducted in the selected EAs to map all structures and boundaries and also identify households with children aged between 9 and 59 months eligible for second stage selection. Household listing was conducted between the 2nd and 9th of December 2017.
Second stage selection of households to be interviewed was conducted by the National Bureau of Statistics (NBS) using simple random sampling without replacement from the list of households with eligible children aged 9 to 59 months. Seven (7) households with eligible children were randomly selected from each of the 30 enumeration areas in every state.
No Deviation
Face-to-face [f2f]
The survey questionnaire consisted of the following: - Household Information Panel (Household rosters) - Individual Questionnaire: This questionnaire was administered to all mothers or caregivers who care for a child that lives with them and was within the age of 9 months - 59 months (5 years).
Data collection was using Census and Survey Program (CSPro) software running on android computers. Range checks and skip patterns were predefined in the data entry program to ensure that only all valid responses were collected and there were responses to all applicable questions ensuring enhanced data quality and completeness of collected data. On completion of the household roster, only age-eligible respondents were presented to the interviewer for interviewing and information had to be collected on all selected respondents before a household completion status was generated by the CAPI software.
Nationally, the household response rate was 96.2 percent. The household response rate was generally higher in rural areas compared to urban areas with the response rate being 97.4 percent and 92.6 percent respectively. Notably, the household response rates in Lagos, Ebonyi, Oyo, Abuja and Abia were below 90 percent. Despite a planned sample size of 7 eligible households per EA, this planned sample was only achieved in 8 states. In a majority of the states, there were less than 7 households with eligible children available for selection to the survey and were all selected in the EA.
Assuming an expected coverage of 90%, half-width confidence interval around state-level estimates of 8% (i.e., 90% +/- 8% coverage estimate) with an alpha level (type I error) of 5%, the effective sample size (i.e., sample size per stratum under a simple random sampling assumption) was n = 101. This level of precision allowed for estimation of coverage with acceptable precision at state, zonal and national levels1.
Series of tables and graphs were generated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of population level and growth rate for the Abuja, Nigeria metro area from 1950 to 2025.