100+ datasets found
  1. c

    Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year...

    • s.cnmilf.com
    • data.iowa.gov
    • +2more
    Updated Jun 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.iowa.gov (2024). Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year Estimates) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/iowa-population-25-years-and-over-educational-attainment-acs-5-year-estimates
    Explore at:
    Dataset updated
    Jun 14, 2024
    Dataset provided by
    data.iowa.gov
    Area covered
    Iowa
    Description

    This dataset provides population 25 years and over estimates by educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B15003. Levels of educational attainment include the following: No schooling completed; Nursery school; Kindergarten; 1st grade; 2nd grade; 3rd grade; 4th grade; 5th grade; 6th grade; 7th grade; 8th grade; 9th grade; 10th grade; 11th grade; 12th grade, no diploma; Regular high school diploma; GED or alternative credential; Some college, less than 1 year; Some college, 1 or more years, no degree; Associate's degree; Bachelor's degree; Master's degree; Professional school degree; and Doctorate degree.

  2. a

    2019-2023 American Community Survey (ACS) 5-year Education Estimates by...

    • rlis-discovery-drcmetro.hub.arcgis.com
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metro (2025). 2019-2023 American Community Survey (ACS) 5-year Education Estimates by Tract [Dataset]. https://rlis-discovery-drcmetro.hub.arcgis.com/datasets/2019-2023-american-community-survey-acs-5-year-education-estimates-by-tract
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Metro
    Area covered
    Description

    Tract-level educational attainment estimates for population 25 years of age and over. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, table B06009. Date of last data update: 2024-01-01 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3818 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use

  3. Iowa Population 25 Years and Over by Sex and Educational Attainment (ACS...

    • mydata.iowa.gov
    • data.iowa.gov
    • +1more
    Updated Jun 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, American Community Survey (2024). Iowa Population 25 Years and Over by Sex and Educational Attainment (ACS 5-Year Estimates) [Dataset]. https://mydata.iowa.gov/Community-Demographics/Iowa-Population-25-Years-and-Over-by-Sex-and-Educa/hzwt-nh4p
    Explore at:
    csv, xml, application/rdfxml, tsv, application/rssxml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, American Community Survey
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Iowa
    Description

    This dataset provides population 25 years and over estimates by sex and educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B15002.

    Sex includes Male, Female and Both.

    Educational Attainment includes the following: No School; PK to 4th Grade; 5th to 6th Grade; 7th to 8th Grade; 9th Grade; 10th Grade; 11th Grade; 12th Grade, No Diploma; High School Diploma or Equivalent; Some College, Less than Year; Some College, One Year or More; Associates Degree; Bachelors Degree; Masters Degree; Professional Degree; and Doctorate Degree.

    Each have been placed in the following educational categories: Less than High School, High School Graduate; Some College or Associates Degree; and Bachelors Degree or Higher.

  4. ACS Educational Attainment Variables - Boundaries

    • atlas-connecteddmv.hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +6more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Educational Attainment Variables - Boundaries [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/maps/84e3022a376e41feb4dd8addf25835a3
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  5. 2023 American Community Survey: B99151 | Allocation of Educational...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B99151 | Allocation of Educational Attainment for the Population 25 Years and Over (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2023.B99151?tid=ACSDT5Y2023.B99151
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  6. o

    2019-2023 American Community Survey (ACS) 5-year Race by Education by County...

    • rlisdiscovery.oregonmetro.gov
    • hub.arcgis.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metro (2025). 2019-2023 American Community Survey (ACS) 5-year Race by Education by County [Dataset]. https://rlisdiscovery.oregonmetro.gov/maps/drcMetro::2019-2023-american-community-survey-acs-5-year-race-by-education-by-county
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Metro
    Area covered
    Description

    County-level race and ethnicity estimates for populations 25 years of age and over, cross-tabulated with educational attainment estimates for populations that have less than a high school diploma. Race and ethnicity estimates include the following categories: White alone, Black or African American alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, Some Other Race alone, Two or More Races, White alone and Not Hispanic or Latino, Hispanic or Latino, and people of color. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, tables B06009, C15002A, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, and C15002I. Date of last data update: 2024-01-11 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3846 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use

  7. w

    KCMO 2013 ACS 5-year estimates Education Census Data

    • data.wu.ac.at
    • data.kcmo.org
    application/excel +5
    Updated Jun 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Thoma-Perry (2015). KCMO 2013 ACS 5-year estimates Education Census Data [Dataset]. https://data.wu.ac.at/odso/data_kcmo_org/YWpwMy1yeHEz
    Explore at:
    xlsx, json, xml, csv, application/xml+rdf, application/excelAvailable download formats
    Dataset updated
    Jun 15, 2015
    Dataset provided by
    Adam Thoma-Perry
    Area covered
    Kansas City
    Description

    2013 ACS 5-year estimates for Education Attainment for population over 25 years organized by census tract. Included in this data are all census tracts that are included in the boundaries of KCMO, even if no KCMO citizens lived in that tract when the data was gathered. All data was gathered on the U.S. Census Bureau's website: http://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t# Table ID: B15003

  8. d

    Iowa Population 24 to 64 Years Old by Educational Attainment and Employment...

    • catalog.data.gov
    • mydata.iowa.gov
    • +1more
    Updated Jun 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.iowa.gov (2024). Iowa Population 24 to 64 Years Old by Educational Attainment and Employment Status (ACS 5-Year Estimates) [Dataset]. https://catalog.data.gov/dataset/iowa-population-24-to-64-years-old-by-educational-attainment-and-employment-status-acs-5-y
    Explore at:
    Dataset updated
    Jun 14, 2024
    Dataset provided by
    data.iowa.gov
    Area covered
    Iowa
    Description

    This dataset contains Iowa population 24 to 64 years old by educational attainment and employment status for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B23006. Educational attainment includes the following categories: Less than High School, High School Graduate, Some College or Associates Degree, and Bachelors Degree or Higher. Employment type is either civilian or military (armed forces). Employment status is either employed or unemployed.

  9. ACS Educational Attainment by Race by Sex Variables - Boundaries

    • hub.arcgis.com
    • visionzero.geohub.lacity.org
    • +2more
    Updated Apr 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS Educational Attainment by Race by Sex Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/5069938129dc416cb2266d24556e0e99
    Explore at:
    Dataset updated
    Apr 3, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  10. ACS 5YR Socioeconomic Estimate Data by Tract

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). ACS 5YR Socioeconomic Estimate Data by Tract [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/acs-5yr-socioeconomic-estimate-data-by-tract/about
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The American Community Survey (ACS) 5 Year 2016-2020 socioeconomic estimate data is a subset of information derived from the following census tables: B08013 - Aggregate Travel Time To Work Of Workers By Sex;B08303 - Travel Time To Work;B17019 - Poverty Status In The Past 12 Months Of Families By Household Type By Tenure;B17021 - Poverty Status Of Individuals In The Past 12 Months By Living Arrangement;B19001 - Household Income In The Past 12 Months;B19013 - Median Household Income In The Past 12 Months;B19025 - Aggregate Household Income In The Past 12 Months;B19113 - Median Family Income In The Past 12 Months;B19202 - Median Non-family Household Income In The Past 12 Months;B23001 - Sex By Age By Employment Status For The Population 16 Years And Over;B25014 - Tenure By Occupants Per Room;B25026 - Total Population in Occupied Housing Units by Tenure by year Householder Moved into Unit;B25106 - Tenure By Housing Costs As A Percentage Of Household Income In The Past 12 Months;C24010 - Sex By Occupation For The Civilian Employed Population 16 Years And Over;B20004 - Median Earnings In the Past 12 Months (In 2015 Inflation-Adjusted Dollars) by Sex by Educational Attainment for the Population 25 Years and Over;B23006 - Educational Attainment by Employment Status for the Population 25 to 64 Years, and;B24021 - Occupation By Median Earnings In The Past 12 Months (In 2015 Inflation-Adjusted Dollars) For The Full-Time, Year-Round Civilian Employed Population 16 Years And Over.To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Socioeconomic Estimate Data by Tract Data Updated: BienniallyDate of Coverage: 2016-2020

  11. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/fbe60d76-af16-427c-a731-897b0525a23d/metadata/FGDC-STD-001-1998.html
    Explore at:
    csv(5), xls(5), zip(1), json(5), shp(5), geojson(5), gml(5), kml(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2018
    Area covered
    New Mexico, West Bounding Coordinate -109.05017 East Bounding Coordinate -103.00196 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.33217
    Description

    A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey education data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection is not comprehensive, but allows a first-level characterization of educational attaiment by grade level and sex (for all persons 25 years and older), plus enrollment estimates at key educational levels (for the universe of all persons 3+ years old). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users. The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries.

  12. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/b815471c-fad7-4f65-b3c1-f1fbb6fa36ec/metadata/FGDC-STD-001-1998.html
    Explore at:
    shp(5), zip(1), geojson(5), kml(5), gml(5), json(5), csv(5), xls(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2016
    Area covered
    New Mexico, West Bounding Coordinate -109.05017 East Bounding Coordinate -103.00196 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.33217
    Description

    A broad and generalized selection of 2012-2016 US Census Bureau 2016 5-year American Community Survey education data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection is not comprehensive, but allows a first-level characterization of educational attaiment by grade level and sex (for all persons 25 years and older), plus enrollment estimates at key educational levels (for the universe of all persons 3+ years old). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users. The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries.

  13. d

    Iowa Population by Poverty Status (Past 12 Months), Sex and Educational...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.iowa.gov (2024). Iowa Population by Poverty Status (Past 12 Months), Sex and Educational Attainment (ACS 5-Year Estimates) [Dataset]. https://catalog.data.gov/dataset/iowa-population-by-poverty-status-past-12-months-sex-and-educational-attainment-acs-5-year
    Explore at:
    Dataset updated
    Jun 14, 2024
    Dataset provided by
    data.iowa.gov
    Area covered
    Iowa
    Description

    This dataset contains Iowa population estimates by poverty status (past 12 months), sex and educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B17003. Poverty status includes the following: All Levels, Below Poverty Level, and Above Poverty Level. Sex includes the following: Both, Male and Female. Educational attainment includes the following: All Educational Levels, Less than High School Graduate, High School Graduate, Some College/Associate's Degree, and Bachelor's Degree or Higher.

  14. d

    ACS 5-Year Social Characteristics DC

    • catalog.data.gov
    • opdatahub.dc.gov
    • +2more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Social Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-5-year-social-characteristics-dc
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    City of Washington, DC
    Description

    Household type, Education, Disability, Language, Computer/Internet Use, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP02. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  15. F

    Bachelor's Degree or Higher (5-year estimate) in Charlottesville city, VA

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Bachelor's Degree or Higher (5-year estimate) in Charlottesville city, VA [Dataset]. https://fred.stlouisfed.org/series/HC01ESTVC1751540
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Virginia, Charlottesville
    Description

    Graph and download economic data for Bachelor's Degree or Higher (5-year estimate) in Charlottesville city, VA (HC01ESTVC1751540) from 2010 to 2023 about Charlottesville City, VA; Charlottesville; tertiary schooling; educational attainment; VA; education; 5-year; and USA.

  16. F

    Bachelor's Degree or Higher (5-year estimate) in Nome Census Area, AK

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Bachelor's Degree or Higher (5-year estimate) in Nome Census Area, AK [Dataset]. https://fred.stlouisfed.org/series/HC01ESTVC1702180
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Nome Census Area
    Description

    Graph and download economic data for Bachelor's Degree or Higher (5-year estimate) in Nome Census Area, AK (HC01ESTVC1702180) from 2010 to 2023 about Nome Census Area, AK; AK; tertiary schooling; educational attainment; education; 5-year; and USA.

  17. ACS Housing Tenure by Education Variables - Boundaries

    • mapdirect-fdep.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Housing Tenure by Education Variables - Boundaries [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/f30f60ef1d38427790193a91f2171c43
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows tenure (owner or renter) by education level of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the overall homeownership rate. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25013Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  18. 2023 American Community Survey: B27019 | Health Insurance Coverage Status...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B27019 | Health Insurance Coverage Status and Type by Age by Educational Attainment (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2023.B27019?q=B27019&g=860XX00US77039
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  19. F

    Bachelor's Degree or Higher (5-year estimate) in Riverside County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Bachelor's Degree or Higher (5-year estimate) in Riverside County, CA [Dataset]. https://fred.stlouisfed.org/series/HC01ESTVC1706065
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Riverside County, California
    Description

    Graph and download economic data for Bachelor's Degree or Higher (5-year estimate) in Riverside County, CA (HC01ESTVC1706065) from 2010 to 2023 about Riverside County, CA; Riverside; tertiary schooling; educational attainment; education; CA; 5-year; and USA.

  20. ACS Educational Attainment by Race by Sex Variables - Centroids

    • mapdirect-fdep.opendata.arcgis.com
    • visionzero.geohub.lacity.org
    • +1more
    Updated Apr 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). ACS Educational Attainment by Race by Sex Variables - Centroids [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/56ae7ed033514ffdbe3fa77ff09a2262
    Explore at:
    Dataset updated
    Apr 3, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.iowa.gov (2024). Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year Estimates) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/iowa-population-25-years-and-over-educational-attainment-acs-5-year-estimates

Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year Estimates)

Explore at:
Dataset updated
Jun 14, 2024
Dataset provided by
data.iowa.gov
Area covered
Iowa
Description

This dataset provides population 25 years and over estimates by educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B15003. Levels of educational attainment include the following: No schooling completed; Nursery school; Kindergarten; 1st grade; 2nd grade; 3rd grade; 4th grade; 5th grade; 6th grade; 7th grade; 8th grade; 9th grade; 10th grade; 11th grade; 12th grade, no diploma; Regular high school diploma; GED or alternative credential; Some college, less than 1 year; Some college, 1 or more years, no degree; Associate's degree; Bachelor's degree; Master's degree; Professional school degree; and Doctorate degree.

Search
Clear search
Close search
Google apps
Main menu