analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data provides estimates of Internet, broadband, and mobile use at the subnational level from 1997-2014. While the U.S. Bureau of the Census has collected data on Internet use over the years, estimates below the state level did not exist until the introduction of the new American Community Survey in 2013. The datasets here fill these gaps with estimates over time for cities, counties, metropolitan areas and states. They also provide demographic breakdowns for the 2013 and 2014 American Community Survey data, beyond what is available on the census website. The datasets can be used to draw comparisons across geographic locations and across time, to track inequality, change, and the impact of Internet use. Collectively, they show major differences across cities, as well as between urban and rural counties. Time series data indicate the flattening of growth in recent years, leading to the persistence of inequalities across places and demographic groups. Multilevel models are used to estimate the percentage of Internet use across counties, principal cities, and metropolitan areas with the CPS and ACs data. A group of random intercept logistic regressions (a type of multilevel model) are constructed for each of the Internet-related variables, namely, home Internet access, home broadband, mobile Internet, and fully-connected household (with broadband and mobile). Estimates are based on the U.S. Bureau of the Census Current Population Survey data for 1997, 2998, 200, 2001, 2003, 2007, 2009, 2010, 2011, and 2012 and the U.S. Bureau of the Census American Community Survey 2013 and 2014, with estimates for missing years imputed via linear interpolation. Estimates for home Internet access are available for 1997-2014, home broadband use for 2000-2014, and mobile use and fully-connected Internet use for 2011-2014. Data available for different geographies is described below. Current Population Survey Data, 1997-2012: Internet use time series, three-year averages, time series for rate of change in Internet use, three-year averages for the rate of change, and yearly summary statistics are available for approximately 330 counties (with some variation over years), the 50 largest Metropolitan Statistical Areas (MSAs), principal cities in the 50 largest MSAs, and the 50 states. American Community Survey Data, 2013-2014: Using Summary Tables of the American Community Survey available in FactFinder, estimates for home Internet access and home broadband are provided by race, ethnicity, education, age, and employment status for 50 states, 817 counties, 381 MSAs, 383 principal cities in 2013 and 387 principal cities in 2014. Using microdata, estimates are developed for home Internet access, home broadband, mobile Internet, and fully connected households broken down by race, ethnicity, education, age, family income, and language skill. The microdata estimates are available for 50 states, 417 counties, 260 MSAs and 102 principal cities in 2013. See Codebook for a more complete description of the datasets, data sources, survey questions, and methods. See the Center for Policy Informatics at Arizona State University website at policyinformatics.asu.edu/broadband-data-portal/home for visualization (maps and graphs) and for further information about this project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data on relationship to householder were derived from answers to Question 2 in the 2015 American Community Survey (ACS), which was asked of all people in housing units. The question on relationship is essential for classifying the population information on families and other groups. Information about changes in the composition of the American family, from the number of people living alone to the number of children living with only one parent, is essential for planning and carrying out a number of federal programs.
The responses to this question were used to determine the relationships of all persons to the householder, as well as household type (married couple family, nonfamily, etc.). From responses to this question, we were able to determine numbers of related children, own children, unmarried partner households, and multi-generational households. We calculated average household and family size. When relationship was not reported, it was imputed using the age difference between the householder and the person, sex, and marital status.
Household – A household includes all the people who occupy a housing unit. (People not living in households are classified as living in group quarters.) A housing unit is a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate living quarters. Separate living quarters are those in which the occupants live separately from any other people in the building and which have direct access from the outside of the building or through a common hall. The occupants may be a single family, one person living alone, two or more families living together, or any other group of related or unrelated people who share living arrangements.
Average Household Size – A measure obtained by dividing the number of people in households by the number of households. In cases where people in households are cross-classified by race or Hispanic origin, people in the household are classified by the race or Hispanic origin of the householder rather than the race or Hispanic origin of each individual.
Average household size is rounded to the nearest hundredth.
Comparability – The relationship categories for the most part can be compared to previous ACS years and to similar data collected in the decennial census, CPS, and SIPP. With the change in 2008 from “In-law” to the two categories of “Parent-in-law” and “Son-in-law or daughter-in-law,” caution should be exercised when comparing data on in-laws from previous years. “In-law” encompassed any type of in-law such as sister-in-law. Combining “Parent-in-law” and “son-in-law or daughter-in-law” does not represent all “in-laws” in 2008.
The same can be said of comparing the three categories of “biological” “step,” and “adopted” child in 2008 to “Child” in previous years. Before 2008, respondents may have considered anyone under 18 as “child” and chosen that category. The ACS includes “foster child” as a category. However, the 2010 Census did not contain this category, and “foster children” were included in the “Other nonrelative” category. Therefore, comparison of “foster child” cannot be made to the 2010 Census. Beginning in 2013, the “spouse” category includes same-sex spouses.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Accurate structural feature characterization of cyclic peptides (CPs), especially those with less than 10 residues and cis-peptide bonds, is challenging but important for the rational design of bioactive peptides. In this study, we performed high-temperature molecular dynamics (high-T MD) simulations on 250 CPs with random sequences and applied the point-adaptive k-nearest neighbors (PAk) method to estimate the free energies of millions of sampled conformations. Using this data set, we trained a SchNet-based deep learning model, termed CPconf_score, to predict the conformational free energies of CPs. We tested CPconf_score to identify near-native conformations from MD-sampled conformations of 50 CPs from the Cambridge Structural Database. Our method achieved accurate predictions for 41 out of 50 CPs with a backbone RMSD of less than 1.0 Å compared to crystal structures. In comparison, other advanced CP structure prediction tools, such as HighFold and Rosetta, successfully predicted 12 and 19 CPs, respectively.
The Local Area Unemployment Statistics (LAUS) program is a Federal-State cooperative effort in which monthly estimates of total employment and unemployment are prepared for approximately 7,600 areas, including counties, cities and metropolitan statistical areas. These estimates are key indicators of local economic conditions. The Bureau of Labor Statistics (BLS) of the U.S. Department of Labor is responsible for the concepts, definitions, technical procedures, validation, and publication of the estimates that State workforce agencies prepare under agreement with BLS. Estimates for counties are produced through a building-block approach known as the "Handbook method." This procedure also uses data from several sources, including the CPS, the CES program, state UI systems, and the Census Bureau's American Community Survey (ACS), to create estimates that are adjusted to the statewide measures of employment and unemployment. Estimates for cities are prepared using disaggregation techniques based on inputs from the ACS, annual population estimates, and current UI data. NOTE: The LAUS Seasonally Adjusted Benchmark 2023 data was last revised in 2024. The newly revised Benchmark 2024 data will be available in mid-2025.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Computation of heats of reaction of large molecules is now feasible using the domain-based pair natural orbital (PNO)-coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] theory. However, to obtain agreement within 1 kcal/mol of experiment, it is necessary to eliminate basis set incompleteness error, which comprises both the AO basis set error and the PNO truncation error. Our investigation into the convergence to the canonical limit of PNO-CCSD(T) energies with the PNO truncation threshold T shows that errors follow the model E(T)=E+AT1/2. Therefore, PNO truncation errors can be eliminated using a simple two-point CPS extrapolation to the canonical limit so that subsequent CBS extrapolation is not limited by the residual PNO truncation error. Using the ISOL24 and MOBH35 data sets, we find that PNO truncation errors are larger for molecules with significant static correlation and that it is necessary to use very tight thresholds of T=10−8 to ensure that errors do not exceed 1 kcal/mol. We present a lower-cost extrapolation scheme that uses information from small basis sets to estimate the PNO truncation errors for larger basis sets. In this way, the canonical limit of CCSD(T) calculations on sizable molecules with large basis sets can be reliably estimated in a practical way. Using this approach, we report near complete basis set (CBS)-CCSD(T) reaction energies for the full ISOL24 and MOBH35 data sets.
This dataset contains the Local Area Unemployment Statistics (LAUS), annual averages from 1990 to 2023. The Local Area Unemployment Statistics (LAUS) program is a Federal-State cooperative effort in which monthly estimates of total employment and unemployment are prepared for approximately 7,600 areas, including counties, cities and metropolitan statistical areas. These estimates are key indicators of local economic conditions. The Bureau of Labor Statistics (BLS) of the U.S. Department of Labor is responsible for the concepts, definitions, technical procedures, validation, and publication of the estimates that State workforce agencies prepare under agreement with BLS. Estimates for counties are produced through a building-block approach known as the "Handbook method." This procedure also uses data from several sources, including the CPS, the CES program, state UI systems, and the Census Bureau's American Community Survey (ACS), to create estimates that are adjusted to the statewide measures of employment and unemployment. Estimates for cities are prepared using disaggregation techniques based on inputs from the ACS, annual population estimates, and current UI data.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5–12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the Local Area Unemployment Statistics (LAUS), annual averages from 1990 to 2024.
The Local Area Unemployment Statistics (LAUS) program is a Federal-State cooperative effort in which monthly estimates of total employment and unemployment are prepared for approximately 7,600 areas, including counties, cities and metropolitan statistical areas. These estimates are key indicators of local economic conditions.
The Bureau of Labor Statistics (BLS) of the U.S. Department of Labor is responsible for the concepts, definitions, technical procedures, validation, and publication of the estimates that State workforce agencies prepare under agreement with BLS.
Estimates for counties are produced through a building-block approach known as the "Handbook method." This procedure also uses data from several sources, including the CPS, the CES program, state UI systems, and the Census Bureau's American Community Survey (ACS), to create estimates that are adjusted to the statewide measures of employment and unemployment. Estimates for cities are prepared using disaggregation techniques based on inputs from the ACS, annual population estimates, and current UI data.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Two types of Cu-Ln heterometallic coordination polymers (CPs), Ln4Cu8(ipO)8(ox)2(H2O)12 (type I) and [Ln2Cu6(ipO)6(H2O)12] Ln = Gd (3); Tb (4); Dy (5), were synthesized under the same hydrothermal conditions and structurally characterized. The first type of CPs displays a three-dimensional framework with a rare case of MoGe2 topology based on {Cu8} and {Ln2} secondary building units (SBUs), while the second type of CPs exhibits a chain structure built up from {Cu6} SBUs and Ln ions. Both of the {Cu8} and {Cu6} SBUs consist of planar [Cu2(ipO)2]2– units linked together by weak Cu–O bonds and π–π interactions. The structural variation from type I to type II can be ascribed to different reactions of H3ipO ligands induced by lanthanide ions. The magnetic investigations revealed that 3 displays a magnetocaloric effect (MCE) with a maximum −ΔSm value of 13.97 J kg–1 K–1 for ΔH = 50 kOe at 4.0 K. It was also found that 5 displays field induced single molecular magnet (SMM) behaviors of slow magnetic relaxation and magnetization hysteresis, with an energy barrier Ueff = 63.68 K and pre-exponential τ0 = 3.77 × 10–8 s.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D