Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing total population for the world by year from 1950 to 2025.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
The geographic distribution of human population is key to understanding the effects of humans on the natural world and how natural events such as storms, earthquakes, and other natural phenomenon affect humans. Dataset SummaryThis layer was created with a model that combines imagery, road intersection density, populated places, and urban foot prints to create a likelihood surface. The likelihood surface is then used to create a raster of population with a cell size of 0.00221 degrees (approximately 250 meters).The population raster is created usingDasymetriccartographic methods to allocate the population values in over 1.6 million census polygons covering the world.The population of each polygon was normalized to the 2013 United Nations population estimates by country.Each cell in this layer has an integer value depicting the number of people that are likely to reside in that cell. Tabulations based on these values should result in population totals that more accurately reflect the population of areas of several square kilometers.This layer has global coverage and was published by Esri in 2014.More information about this layer is available:Building the Most Detailed Population Map in the World
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in World was estimated at 8061.9 million people in 2023, according to the latest census figures and projections from Trading Economics. This dataset includes a chart with historical data for World Population.
This dataset contains human population density for the state of California and a small portion of western Nevada for the year 2000. The population density is based on US Census Bureau data and has a cell size of 990 meters.
The purpose of the dataset is to provide a consistent statewide human density GIS layer for display, analysis and modeling purposes.
The state of California, and a very small portion of western Nevada, was divided into pixels with a cell size 0.98 km2, or 990 meters on each side. For each pixel, the US Census Bureau data was clipped, the total human population was calculated, and that population was divided by the area to get human density (people/km2) for each pixel.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Percent of world population: The latest value from 2023 is 4.2 percent, a decline from 4.22 percent in 2022. In comparison, the world average is 0.51 percent, based on data from 196 countries. Historically, the average for the USA from 1960 to 2023 is 4.93 percent. The minimum value, 4.2 percent, was reached in 2023 while the maximum of 6.02 percent was recorded in 1961.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 0.51 percent. The highest value was in India: 17.91 percent and the lowest value was in Andorra: 0 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The dataset contain the most recent demographic data, which will help us understand, analyze, and forecast the future. The following representations include world population from 2020 to 2023, life expectancy in 2023, and annual population totals from 1960 to 2023.
Click below to read more: https://rb.gy/uaafa
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Published in The Anthropocene Review. Abstract: Enormous growth of the world population during the last two centuries and its present slowing down pose questions about precedents in history and broader forces shaping the population size. Population estimates collected in an extensive survey of literature (873 estimates from 25 studies covering 1,000,000 BCE to 2100 CE) show that world population growth has proceeded in two distinct phases of acceleration followed by stoppage—from at least 25,000 BCE to 100 BCE, and from 400 CE to the present, interrupted by centuries of standstill and 10% decrease. Both phases can be fitted with a mathematical function that projects to a peak at 11.2 ± 1.5 billion around 2100 CE. An interaction model can account for this acceleration-stoppage pattern in quantitative detail: Technology grows exponentially, with rate boosted by population. Population grows exponentially, capped by Earth’s carrying capacity. Technology raises this cap, but only until it approaches Earth’s ultimate carrying capacity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in World was reported at 49.71 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on May of 2025.
The Gridded Population of the World, Version 3 (GPWv3): Population Count Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
The Global Human Settlement Layer: Population and Built-Up Estimates, and Degree of Urbanization Settlement Model Grid data set provides gridded data on human population (GHS-POP), built-up area (GHS-BUILT), and degree of urbanization (GHS-SMOD) across four time periods: 1975, 1990, 2000, and 2014 (BUILT) or 2015 (POP, SMOD). GHS-BUILT describes the percent built-up area for each 30 arc-second grid cell (approximately 1 km at the equator) based on Landsat imagery from each of the four time periods. GHS-POP consists of census data from the 2010 round of global census from Gridded Population of the World, Version 4, Revision 10 (GPWv4.10) spatially-allocated within census Units based on the percent built-up areas from GHS-BUILT. GHS-SMOD uses GHS-BUILT and GHS-POP in order to develop a standardized classification of degree of urbanization grid. The original data from the Joint Research Centre of the European Commission (JRC-EC) has been combined into a single data package in GeoTIFF format and reprojected from Mollweide Equal Area into WGS84 at 9 arc-second and 30 arc-second horizontal resolutions in order to support integration with a variety of global raster data sets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Human population data from UN
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Population figures for countries, regions (e.g. Asia) and the world. Data comes originally from World Bank and has been converted into standard CSV.
Estimated density of people per grid-cell, approximately 1km (0.008333 degrees) resolution. The units are number of people per Km² per pixel, expressed as unit: "ppl/Km²". The mapping approach is Random Forest-based dasymetric redistribution. The WorldPop project was initiated in October 2013 to combine the AfriPop, AsiaPop and AmeriPop population mapping projects. It aims to provide an open access archive of spatial demographic datasets for Central and South America, Africa and Asia to support development, disaster response and health applications. The methods used are designed with full open access and operational application in mind, using transparent, fully documented and peer-reviewed methods to produce easily updatable maps with accompanying metadata and measures of uncertainty. Acknowledgements information at https://www.worldpop.org/acknowledgements
This dataset contains the modeling results GIS data (maps) of the study “Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago” by Rodríguez et al. (2022). The NPP data (npp.zip) was computed using an empirical formula (the Miami model) from palaeo temperature and palaeo precipitation data aggregated for each timeslice from the Oscillayers dataset (Gamisch, 2019), as defined in Rodríguez et al. (2022, in review). The Population densities file (pop_densities.zip) contains the computed minimum and maximum population densities rasters for each of the defined MIS timeslices. With the population density value Dc in logarithmic form log(Dc). The Species Distribution Model (sdm.7z) includes input data (folder /data), intermediate results (folder /work) and results and figures (folder /results). All modelling steps are included as an R project in the folder /scripts. The R project is subdivided into individual scripts for data preparation (1.x), sampling procedure (2.x), and model computation (3.x). The habitat range estimation (habitat_ranges.zip) includes the potential spatial boundaries of the hominin habitat as binary raster files with 1=presence and 0=absence. The ranges rely on a dichotomic classification of the habitat suitability with a threshold value inferred from the 5% quantile of the presence data. The habitat suitability (habitat_suitability.zip) is the result of the Species Distribution Modelling and describes the environmental suitability for hominin presence based on the sites considered in this study. The values range between 0=low and 1=high suitability. The dataset includes the mean (pred_mean) and standard deviation (pred_std) of multiple model runs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing total population for the world by year from 1950 to 2025.