Facebook
TwitterWelcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.
You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.
How do annual members and casual riders use Cyclistic bikes differently?
What is the problem you are trying to solve?
How do annual members and casual riders use Cyclistic bikes differently?
How can your insights drive business decisions?
The insight will help the marketing team to make a strategy for casual riders
Where is your data located?
Data located in Cyclistic organization data.
How is data organized?
Dataset are in csv format for each month wise from Financial year 22.
Are there issues with bias or credibility in this data? Does your data ROCCC?
It is good it is ROCCC because data collected in from Cyclistic organization.
How are you addressing licensing, privacy, security, and accessibility?
The company has their own license over the dataset. Dataset does not have any personal information about the riders.
How did you verify the data’s integrity?
All the files have consistent columns and each column has the correct type of data.
How does it help you answer your questions?
Insights always hidden in the data. We have the interpret with data to find the insights.
Are there any problems with the data?
Yes, starting station names, ending station names have null values.
What tools are you choosing and why?
I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
Have you ensured the data’s integrity?
Yes, the data is consistent throughout the columns.
What steps have you taken to ensure that your data is clean?
First duplicates, null values are removed then added new columns for analysis.
How can you verify that your data is clean and ready to analyze?
Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
Combine the all dataset into single data frame to make consistent throught the analysis.
Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
Removed the null rows from the dataset by using the “na.omit function”
Have you documented your cleaning process so you can review and share those results?
Yes, the cleaning process is documented clearly.
How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.
What surprises did you discover in the data?
Casual member ride duration is higher than the annual members
Causal member widely uses docked bike than the annual members
What trends or relationships did you find in the data?
Annual members are used mainly for commute purpose
Casual member are preferred the docked bikes
Annual members are preferred the electric or classic bikes
How will these insights help answer your business questions?
This insights helps to build a profile for members
Were you able to answer the question of how ...
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Publication
will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt. 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Russian Financial Statements Database (RFSD) is an open, harmonized collection of annual unconsolidated financial statements of the universe of Russian firms:
🔓 First open data set with information on every active firm in Russia.
🗂️ First open financial statements data set that includes non-filing firms.
🏛️ Sourced from two official data providers: the Rosstat and the Federal Tax Service.
đź“… Covers 2011-2023 initially, will be continuously updated.
🏗️ Restores as much data as possible through non-invasive data imputation, statement articulation, and harmonization.
The RFSD is hosted on 🤗 Hugging Face and Zenodo and is stored in a structured, column-oriented, compressed binary format Apache Parquet with yearly partitioning scheme, enabling end-users to query only variables of interest at scale.
The accompanying paper provides internal and external validation of the data: http://arxiv.org/abs/2501.05841.
Here we present the instructions for importing the data in R or Python environment. Please consult with the project repository for more information: http://github.com/irlcode/RFSD.
Importing The Data
You have two options to ingest the data: download the .parquet files manually from Hugging Face or Zenodo or rely on 🤗 Hugging Face Datasets library.
Python
🤗 Hugging Face Datasets
It is as easy as:
from datasets import load_dataset import polars as pl
RFSD = load_dataset('irlspbru/RFSD')
RFSD_2023 = pl.read_parquet('hf://datasets/irlspbru/RFSD/RFSD/year=2023/*.parquet')
Please note that the data is not shuffled within year, meaning that streaming first n rows will not yield a random sample.
Local File Import
Importing in Python requires pyarrow package installed.
import pyarrow.dataset as ds import polars as pl
RFSD = ds.dataset("local/path/to/RFSD")
print(RFSD.schema)
RFSD_full = pl.from_arrow(RFSD.to_table())
RFSD_2019 = pl.from_arrow(RFSD.to_table(filter=ds.field('year') == 2019))
RFSD_2019_revenue = pl.from_arrow( RFSD.to_table( filter=ds.field('year') == 2019, columns=['inn', 'line_2110'] ) )
renaming_df = pl.read_csv('local/path/to/descriptive_names_dict.csv') RFSD_full = RFSD_full.rename({item[0]: item[1] for item in zip(renaming_df['original'], renaming_df['descriptive'])})
R
Local File Import
Importing in R requires arrow package installed.
library(arrow) library(data.table)
RFSD <- open_dataset("local/path/to/RFSD")
schema(RFSD)
scanner <- Scanner$create(RFSD) RFSD_full <- as.data.table(scanner$ToTable())
scan_builder <- RFSD$NewScan() scan_builder$Filter(Expression$field_ref("year") == 2019) scanner <- scan_builder$Finish() RFSD_2019 <- as.data.table(scanner$ToTable())
scan_builder <- RFSD$NewScan() scan_builder$Filter(Expression$field_ref("year") == 2019) scan_builder$Project(cols = c("inn", "line_2110")) scanner <- scan_builder$Finish() RFSD_2019_revenue <- as.data.table(scanner$ToTable())
renaming_dt <- fread("local/path/to/descriptive_names_dict.csv") setnames(RFSD_full, old = renaming_dt$original, new = renaming_dt$descriptive)
Use Cases
🌍 For macroeconomists: Replication of a Bank of Russia study of the cost channel of monetary policy in Russia by Mogiliat et al. (2024) — interest_payments.md
🏠For IO: Replication of the total factor productivity estimation by Kaukin and Zhemkova (2023) — tfp.md
🗺️ For economic geographers: A novel model-less house-level GDP spatialization that capitalizes on geocoding of firm addresses — spatialization.md
FAQ
Why should I use this data instead of Interfax's SPARK, Moody's Ruslana, or Kontur's Focus?hat is the data period?
To the best of our knowledge, the RFSD is the only open data set with up-to-date financial statements of Russian companies published under a permissive licence. Apart from being free-to-use, the RFSD benefits from data harmonization and error detection procedures unavailable in commercial sources. Finally, the data can be easily ingested in any statistical package with minimal effort.
What is the data period?
We provide financials for Russian firms in 2011-2023. We will add the data for 2024 by July, 2025 (see Version and Update Policy below).
Why are there no data for firm X in year Y?
Although the RFSD strives to be an all-encompassing database of financial statements, end users will encounter data gaps:
We do not include financials for firms that we considered ineligible to submit financial statements to the Rosstat/Federal Tax Service by law: financial, religious, or state organizations (state-owned commercial firms are still in the data).
Eligible firms may enjoy the right not to disclose under certain conditions. For instance, Gazprom did not file in 2022 and we had to impute its 2022 data from 2023 filings. Sibur filed only in 2023, Novatek — in 2020 and 2021. Commercial data providers such as Interfax's SPARK enjoy dedicated access to the Federal Tax Service data and therefore are able source this information elsewhere.
Firm may have submitted its annual statement but, according to the Uniform State Register of Legal Entities (EGRUL), it was not active in this year. We remove those filings.
Why is the geolocation of firm X incorrect?
We use Nominatim to geocode structured addresses of incorporation of legal entities from the EGRUL. There may be errors in the original addresses that prevent us from geocoding firms to a particular house. Gazprom, for instance, is geocoded up to a house level in 2014 and 2021-2023, but only at street level for 2015-2020 due to improper handling of the house number by Nominatim. In that case we have fallen back to street-level geocoding. Additionally, streets in different districts of one city may share identical names. We have ignored those problems in our geocoding and invite your submissions. Finally, address of incorporation may not correspond with plant locations. For instance, Rosneft has 62 field offices in addition to the central office in Moscow. We ignore the location of such offices in our geocoding, but subsidiaries set up as separate legal entities are still geocoded.
Why is the data for firm X different from https://bo.nalog.ru/?
Many firms submit correcting statements after the initial filing. While we have downloaded the data way past the April, 2024 deadline for 2023 filings, firms may have kept submitting the correcting statements. We will capture them in the future releases.
Why is the data for firm X unrealistic?
We provide the source data as is, with minimal changes. Consider a relatively unknown LLC Banknota. It reported 3.7 trillion rubles in revenue in 2023, or 2% of Russia's GDP. This is obviously an outlier firm with unrealistic financials. We manually reviewed the data and flagged such firms for user consideration (variable outlier), keeping the source data intact.
Why is the data for groups of companies different from their IFRS statements?
We should stress that we provide unconsolidated financial statements filed according to the Russian accounting standards, meaning that it would be wrong to infer financials for corporate groups with this data. Gazprom, for instance, had over 800 affiliated entities and to study this corporate group in its entirety it is not enough to consider financials of the parent company.
Why is the data not in CSV?
The data is provided in Apache Parquet format. This is a structured, column-oriented, compressed binary format allowing for conditional subsetting of columns and rows. In other words, you can easily query financials of companies of interest, keeping only variables of interest in memory, greatly reducing data footprint.
Version and Update Policy
Version (SemVer): 1.0.0.
We intend to update the RFSD annualy as the data becomes available, in other words when most of the firms have their statements filed with the Federal Tax Service. The official deadline for filing of previous year statements is April, 1. However, every year a portion of firms either fails to meet the deadline or submits corrections afterwards. Filing continues up to the very end of the year but after the end of April this stream quickly thins out. Nevertheless, there is obviously a trade-off between minimization of data completeness and version availability. We find it a reasonable compromise to query new data in early June, since on average by the end of May 96.7% statements are already filed, including 86.4% of all the correcting filings. We plan to make a new version of RFSD available by July.
Licence
Creative Commons License Attribution 4.0 International (CC BY 4.0).
Copyright © the respective contributors.
Citation
Please cite as:
@unpublished{bondarkov2025rfsd, title={{R}ussian {F}inancial {S}tatements {D}atabase}, author={Bondarkov, Sergey and Ledenev, Victor and Skougarevskiy, Dmitriy}, note={arXiv preprint arXiv:2501.05841}, doi={https://doi.org/10.48550/arXiv.2501.05841}, year={2025}}
Acknowledgments and Contacts
Data collection and processing: Sergey Bondarkov, sbondarkov@eu.spb.ru, Viktor Ledenev, vledenev@eu.spb.ru
Project conception, data validation, and use cases: Dmitriy Skougarevskiy, Ph.D.,
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterWelcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.
You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.
How do annual members and casual riders use Cyclistic bikes differently?
What is the problem you are trying to solve?
How do annual members and casual riders use Cyclistic bikes differently?
How can your insights drive business decisions?
The insight will help the marketing team to make a strategy for casual riders
Where is your data located?
Data located in Cyclistic organization data.
How is data organized?
Dataset are in csv format for each month wise from Financial year 22.
Are there issues with bias or credibility in this data? Does your data ROCCC?
It is good it is ROCCC because data collected in from Cyclistic organization.
How are you addressing licensing, privacy, security, and accessibility?
The company has their own license over the dataset. Dataset does not have any personal information about the riders.
How did you verify the data’s integrity?
All the files have consistent columns and each column has the correct type of data.
How does it help you answer your questions?
Insights always hidden in the data. We have the interpret with data to find the insights.
Are there any problems with the data?
Yes, starting station names, ending station names have null values.
What tools are you choosing and why?
I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
Have you ensured the data’s integrity?
Yes, the data is consistent throughout the columns.
What steps have you taken to ensure that your data is clean?
First duplicates, null values are removed then added new columns for analysis.
How can you verify that your data is clean and ready to analyze?
Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
Combine the all dataset into single data frame to make consistent throught the analysis.
Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
Removed the null rows from the dataset by using the “na.omit function”
Have you documented your cleaning process so you can review and share those results?
Yes, the cleaning process is documented clearly.
How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.
What surprises did you discover in the data?
Casual member ride duration is higher than the annual members
Causal member widely uses docked bike than the annual members
What trends or relationships did you find in the data?
Annual members are used mainly for commute purpose
Casual member are preferred the docked bikes
Annual members are preferred the electric or classic bikes
How will these insights help answer your business questions?
This insights helps to build a profile for members
Were you able to answer the question of how ...