Aerial Imagery/Photography, Scanned Historical Maps, CCT DRAFT Ground Level Map (GLM), Infrared Imagery, Digital Elevation Models (DEM), etc. All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/Popular Image Services: 2021 Aerial Imagery , 2020 Aerial Imagery , 2019 Aerial Imagery , DRAFT CCT Ground Level Map (GLM) 2019_5m_ DEM
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif
.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
License information was derived automatically
Here is an image of the global municipal tax (founcier bati + habitation). Average tax per asset Nancy 2014
To do it again you will need: — QGIS software (Free: https://www.qgis.org/fr/site/forusers/download.html), — a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) — an export of tax rates (https://www.data.gouv.fr/fr/datasets/impots-locaux/ > Municipal and intercommunal data > Your Department > Local Direct Tax Data 2014 (XLS format)) — data (most days of INSEE here 2012 http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=base-cc-emploi-pop-active-2012)
Operating Mode: — process your data in your favorite spreadsheet (Excel or OpenOffice Calc) by integrating impot data, and INSEE to pull out the numbers that seem revealing to you — Install QGIS — Open the.qgs of your department
Add columns — Right click property on the main layer — Go to the field menu (on the left) — Add (via pencil) the desired columns (here average housing tax per asset, average property tax per asset, and the sum of both) — These are reals of precision 2, and length 6 — Register
Insert data: — Right-click on the “Open attribute table” layer — Select all — Copy — Paste in excel (or openOffice calcs) — Put the ad hoc formulas in excel (SOMME.SI.ENS to recover the rate) — Save the desired tab in CSV DOS with the new values — In QGIS > Menu > Layer > Add a delimited layer of text — Import the CSV
Present the data: — To simplify I advise you to make a layer by rate, and layers sums. So rots you in three clicks out the image of the desired rate — For each layer (or rate) — Right click properties on the csv layer — Labels to add city name and desired rate — Style for fct coloring of a csv field
Print the data in pdf: — To print, you need to define a print template — In the menu choose new printing dialer — choose the format (a department in A0 is rather readable) — Add vas legend, scale, and other — Print and here...
NB: this method creates aberrations: — in the case where the INSEE does not have a number or numbers that have moved a lot since — it is assumed that only assets pay taxes (which is more fair, but not 100 %)
Coastline for Antarctica created from various mapping and remote sensing sources, consisting of the following coast types: ice coastline, rock coastline, grounding line, ice shelf and front, ice rumple, and rock against ice shelf. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. High resolution versions of ADD data are suitable for scales larger than 1:1,000,000. The largest suitable scale is changeable and dependent on the region.
Major changes in v7.5 include updates to ice shelf fronts in the following regions: Seal Nunataks and Scar Inlet region, the Ronne-Filchner Ice Shelf, between the Brunt Ice Shelf and Riiser-Larsen Peninsula, the Shackleton and Conger ice shelves, and Crosson, Thwaites and Pine Island. Small areas of grounding line and ice coastlines were also updated in some of these regions as needed.
Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.
Further information and useful links
Map projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.
The currency of this dataset is May 2022 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.
For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.
A related medium resolution dataset is also published via Living Atlas, as well medium and high resolution polygon datasets.
For background information on the ADD project, please see the British Antarctic Survey ADD project page.
Lineage
Dataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry checks, but does not contain strict topology. Quality varies across the dataset and certain areas where high resolution source data were available are suitable for large scale maps whereas other areas are only suitable for smaller scales. Each line has attributes detailing the source which can give the user further indications of its suitability for specific uses. Attributes also give information including 'surface' (e.g. grounding line, ice coastline, ice shelf front) and revision date. Compiled from sources ranging in time from 1990s-2022 - individual lines contain exact source dates.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
License information was derived automatically
Here is an image of the overall municipal tax rate (foncier bati + habitation, for municipalities and inter-municipalities).
http://physaphae.noip.me/Img/2015_Rate_54" alt="Local tax rate 54 of 2015" title="Local tax rate 54 of 2015">
Given that it is at the departmental mesh, it is not useful to include the departmental rate, and national... That would not be part of the comparison.
To do it again yourself you will need: - QQGIS software (Free: https://www.qgis.org/en/site/forusers/download.html), - a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) - an export of tax rates (https://www.data.gouv.fr/en/datasets/local taxes/)
Procedure: Install QGIS Open your department's .qgs
Add columns - Right click property on the main layer - Go to the fields menu (on the left) - Add (via the pencil) the desired columns (here municipal tax rate, intercommunal built land and housing) - These are reals of a precision 2, and a length 4 - Register
Insert data: - Right click on the layer "Open attribute table" - Select all - Copy - Paste into excel (or openOffice calcs) - Put the ad hoc formulas in excel (SUM.SI.ENS to recover the rate) - Save the desired tab in CSV DOS with the new values - In QGIS > Menu > Layer > Add a delimited text layer - Import the CSV
Present the data: - To simplify I advise you to make one layer per rate, and layers are. Thus rots you in three clicks take out the image of the desired rate - For each layer (or rate) - Right click properties on the csv layer - Labels to add the name of the city and the desired rate - Style for coloring in fct of a csv field
Print the data in pdf: - To print, you need to define a print template - In the menu choose new print dialler - choose the format (a department in A0 is rather readable) - Add vas legend, ladder, and other - Print and voila...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database contains 64 large images of craters on the lunar and martian surfaces and 3 images of boulder fields on Earth (see manuscript https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023JE008013 for more information on those terrestrial locations). The data was collected during the BOULDERING Marie Skłodowska-Curie Global fellowship between October 2021 and 2024.
For each image, the boulder outlines within specific tiles within the image were carefully mapped in QGIS. More information about the labelling procedure can be found in the following manuscript (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023JE008013). This dataset differs from the previous dataset included along with the manuscript https://zenodo.org/records/8171052, as it contains more mapped images, especially of boulder populations around young impact structures on the Moon (cold spots).
For each location, you will find a raster with a .tif format, and three shapefiles:
a boulder-mapping file, which is the manually digitized outline of boulders.
a tiles-completely-mapped file, which depicts the patches/tiles/windows on which the boulder mapping has been conducted.
a global-tiles file, which shows all of the image patches/tiles/windows (pick the term you are the most familiar with) within a raster.
In addition you will find .pkl (which stands for pickle), which contains some information about the patches/tiles/windows if you would need to clip those windows out from the original raster. You can find more information in the way we process this raw data into a format which can be ingested in a deep learning model (see https://zenodo.org/records/14250874) in the two following github repositories (https://github.com/astroNils/YOLOv8-BeyondEarth and https://github.com/astroNils/MLtools). If you don't plan in adding more training data, you can directly used the pre-processed database (see https://zenodo.org/records/14250874).
There are multiple locations/images per planetary body. Cold spots are located on the Moon, but they are saved in a folder of their own.
Note that the cold spots boulder mapping shapefiles are partially manually mapped, and partially originating from predictions made from a deep learning model (which explains the outline of boulders are predicted within one pixel).
How to cite:
Please refer to the "how to cite" section of the readme file of https://github.com/astroNils/YOLOv8-BeyondEarth.
Structure:
. └── raw_data/ ├── coldspots/ │ └── image_name/ │ ├── shp/ │ │ ├── -tiles-completely-mapped.shp │ │ ├── -boulder-mapping.shp │ │ └── -global-tiles.shp │ └── raster/ │ └── .tif ├── earth/ │ └── image_name/ │ ├── shp/ │ │ ├── -tiles-completely-mapped.shp │ │ ├── -boulder-mapping.shp │ │ └── -global-tiles.shp │ └── raster/ │ └── .tif ├── mars/ │ └── image_name/ │ ├── shp/ │ │ ├── -tiles-completely-mapped.shp │ │ ├── -boulder-mapping.shp │ │ └── -global-tiles.shp │ └── raster/ │ └── .tif └── moon/ └── image_name/ ├── shp/ │ │ ├── -tiles-completely-mapped.shp │ │ ├── -boulder-mapping.shp │ │ └── -global-tiles.shp └── raster/ └── .tif
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractCoastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with 'land', 'ice shelf', 'ice tongue' or 'rumple' attribute. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. High resolution versions of ADD data are suitable for scales larger than 1:1,000,000. The largest suitable scale is changeable and dependent on the region.Changes in v7.10 include updates to the coastline of Alexander Island and surrounding islands, and the ice shelf fronts of the Wilkins and Brunt ice shelves.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.The currency of this dataset is November 2024 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.A related medium resolution dataset is also published via Living Atlas, as well medium and high resolution line datasets.For background information on the ADD project, please see the British Antarctic Survey ADD project page.LineageDataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry checks, but does not contain strict topology. Quality varies across the dataset and certain areas where high resolution source data were available are suitable for large scale maps whereas other areas are only suitable for smaller scales. Each polygon contains a 'surface' attribute with either 'land', 'ice shelf', 'ice tongue' or 'rumple'. Details of when and how each line was created can be found in the attributes of the high resolution polyline coastline dataset. Data sources range in time from 1990s-2024 - individual lines contain exact source dates.CitationGerrish, L., Ireland, L., Fretwell, P., & Cooper, P. (2024). High resolution vector polygons of the Antarctic coastline (Version 7.10) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/4ecd795d-e038-412f-b430-251b33fc880eIf using for a graphic or if short on space, please cite as 'data from the SCAR Antarctic Digital Database, 2024'
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractCoastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with ‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’ attribute. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. This dataset has been generalised from the high resolution vector polygons. Medium resolution versions of ADD data are suitable for scales smaller than 1:1,000,000, although certain regions will appear more detailed than others due to variable data availability and coastline characteristics.Changes in v7.10 include updates to the coastline of Alexander Island and surrounding islands, and the ice shelf fronts of the Wilkins and Brunt ice shelves.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.The currency of this dataset is November 2024 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.A related high resolution dataset is also published via Living Atlas, as well medium and high resolution line datasets.For background information on the ADD project, please see the British Antarctic Survey ADD project page.LineageDataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry checks, but does not contain strict topology. Quality varies across the dataset and certain areas where high resolution source data were available are suitable for large scale maps whereas other areas are only suitable for smaller scales. Each polygon contains a ‘surface’ attribute with either ‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’. Details of when and how each line was created can be found in the attributes of the high or medium resolution polyline coastline dataset. Data sources range in time from 1990s-2024 - individual lines contain exact source dates. This medium resolution version has been generalised from the high resolution version. All polygons <0.1km² not intersecting anything else were deleted and the ‘simplify’ tool was used in ArcGIS with the ‘retain critical points’ algorithm and a smoothing tolerance of 50 m.CitationGerrish, L., Ireland, L., Fretwell, P., & Cooper, P. (2024). Medium resolution vector polygons of the Antarctic coastline (Version 7.10) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/93ac35af-9ec7-4594-9aaa-0760a2b289d5If using for a graphic or if short on space, please cite as 'data from the SCAR Antarctic Digital Database, 2024'
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
The 5m DEM is derived from the LiDAR2019B dataset (consisting of the 2018, 2019A and 2019B datasets). The 5m DEM has a vertical accuracy of 30cm. The height reference used is the SA Land Levelling Datum and the SAGEOID2010 was employed.The City of Cape Town Ground Level Map 2019 is defined in the City of Cape Town Municipal Planning Amendment By-law, 2019 as: “‘City of Cape Town Ground Level Map’ means a map approved in terms of the development management scheme, indicating the existing ground level based on floating point raster’s and a contour dataset from LiDAR information available to the City”. The Ground Level Map was approved by the City Council on the 27th July 2023.All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&For a copy or subset of this dataset, please contact the City Maps Office: city.maps@capetown.gov.zaCCT Ground Level Map: ‘How to Access’ Guide – External Users: CCT Ground Level Map: ‘How to Access’ Guide – External Users | Open Data Portal (arcgis.com)Geomatics Ground Level Map Explainer: Geomatics Ground Level Map Explainer | Open Data Portal (arcgis.com)Land Use Management Ground Level Map Explainer: Land Use Management Ground Level Map Explainer | Open Data Portal (arcgis.com)
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Aerial Imagery/Photography, Scanned Historical Maps, CCT DRAFT Ground Level Map (GLM), Infrared Imagery, Digital Elevation Models (DEM), etc. All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/Popular Image Services: 2021 Aerial Imagery , 2020 Aerial Imagery , 2019 Aerial Imagery , DRAFT CCT Ground Level Map (GLM) 2019_5m_ DEM