4 datasets found
  1. Google Data Analytics Case Study Cyclistic

    • kaggle.com
    zip
    Updated Sep 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
    Explore at:
    zip(1299 bytes)Available download formats
    Dataset updated
    Sep 27, 2022
    Authors
    Udayakumar19
    Description

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

    Ask

    How do annual members and casual riders use Cyclistic bikes differently?

    Guiding Question:

    What is the problem you are trying to solve?
      How do annual members and casual riders use Cyclistic bikes differently?
    How can your insights drive business decisions?
      The insight will help the marketing team to make a strategy for casual riders
    

    Prepare

    Guiding Question:

    Where is your data located?
      Data located in Cyclistic organization data.
    
    How is data organized?
      Dataset are in csv format for each month wise from Financial year 22.
    
    Are there issues with bias or credibility in this data? Does your data ROCCC? 
      It is good it is ROCCC because data collected in from Cyclistic organization.
    
    How are you addressing licensing, privacy, security, and accessibility?
      The company has their own license over the dataset. Dataset does not have any personal information about the riders.
    
    How did you verify the data’s integrity?
      All the files have consistent columns and each column has the correct type of data.
    
    How does it help you answer your questions?
      Insights always hidden in the data. We have the interpret with data to find the insights.
    
    Are there any problems with the data?
      Yes, starting station names, ending station names have null values.
    

    Process

    Guiding Question:

    What tools are you choosing and why?
      I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
    
    Have you ensured the data’s integrity?
     Yes, the data is consistent throughout the columns.
    
    What steps have you taken to ensure that your data is clean?
      First duplicates, null values are removed then added new columns for analysis.
    
    How can you verify that your data is clean and ready to analyze? 
     Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
    
    Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
    Combine the all dataset into single data frame to make consistent throught the analysis.
    Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
    Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
    Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
    Removed the null rows from the dataset by using the “na.omit function”
    Have you documented your cleaning process so you can review and share those results? 
      Yes, the cleaning process is documented clearly.
    

    Analyze Phase:

    Guiding Questions:

    How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

    What surprises did you discover in the data?
      Casual member ride duration is higher than the annual members
      Causal member widely uses docked bike than the annual members
    What trends or relationships did you find in the data?
      Annual members are used mainly for commute purpose
      Casual member are preferred the docked bikes
      Annual members are preferred the electric or classic bikes
    How will these insights help answer your business questions?
      This insights helps to build a profile for members
    

    Share

    Guiding Quesions:

    Were you able to answer the question of how ...
    
  2. Bike share trips21

    • kaggle.com
    zip
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ndubuisi Thankgod (2022). Bike share trips21 [Dataset]. https://www.kaggle.com/ndubuisithankgod/bike-share-trips21
    Explore at:
    zip(408511444 bytes)Available download formats
    Dataset updated
    May 12, 2022
    Authors
    Ndubuisi Thankgod
    Description

    Introduction This is a case study called Capstone Project from the Google Data Analytics Certificate.

    In this case study, I am working as a junior data analyst at a fictitious bike-share company in Chicago called Cyclistic.

    Cyclistic is a bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike.

    Scenario The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, our team will design a new marketing strategy to convert casual riders into annual members.

    Primary Stakeholders: 1: Cyclistic Executive Team

    2: Lily Moreno, Director of Marketing and Manager

    ASK How do annual members and casual riders use Cyclistic bikes differently? Why would casual riders buy Cyclistic annual memberships? How can Cyclistic use digital media to influence casual riders to become members?

    Prepare

    The last 12 months were selected for analysis which cover April 2021 - March 2022. The data is stored in CSV files. Each file contains one month data for a total of 12 .csv files.

    Data appears to be reliable with no bias. It also appears to be original, current and cited.

    I used Cyclistic’s historical trip data found here: https://divvy-tripdata.s3.amazonaws.com/index.html

    The data has been made available by Motivate International Inc. under this license: https://ride.divvybikes.com/data-license-agreement

    Limitations Financial information is not available.

    Process Used R to analyze and clean data

    After installing the R packages, data was collected, wrangled and combined into a single file. Columns were renamed. Looked for incongruencies in the data frames and converted some columns to character type, so they can stack correctly. Combined all quarters into one big data frame. Removed unnecessary columns Analyze Inspected new data table to ensure column names were correctly assigned. Formatted columns to ensure proper data types were assigned (numeric, character, etc). Consolidated the member_casual column. Added day, month and year columns to aggregate data. Added ride-length column to the entire data frame for consistency. Aggregated data, compared average rides between members and casual users.

    Share After analysis, the data can tell us 1. The population of the annual members is more than the casual riders, with 55.5% of the total riders in the last 12 months. 2. The rides per day of week show casual riders peak on Saturday and Sunday while members peak Monday through Friday. This indicates members mainly use the bikes for their commutes and not leisure. 3. The percentage of both set of riders peaked during the summer months. 4. The rides per month show that casual riders were a lot more active during the summer months than the members. During the winter and spring months the members are more active than the casual riders. 5. Analyzing which type of bike amongst the three types is the most popular Shows that classic and electric bikes are more desirable. Both types of memberships prefer using the classic bike more than the electric bike. Members use the classic bike more than the casual riders,and only the casual riders use the docked bike. 6. Comparing the average ride time shows a stark difference between the casuals riders and members. Casuals riders spend more time using the service than members. ACT Recommendations to convert casual riders to annual members: Bonus offers for annual members and not for casual riders. Increase the price of the bikes on weekends for casual riders. Special offers for anyone who registers for the annual membership during the winter season. The marketing campaign should be carried out in the warmer months and during the weekends in order to reach more casual riders.

  3. Z

    Data from: Russian Financial Statements Database: A firm-level collection of...

    • data.niaid.nih.gov
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bondarkov, Sergey; Ledenev, Victor; Skougarevskiy, Dmitriy (2025). Russian Financial Statements Database: A firm-level collection of the universe of financial statements [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14622208
    Explore at:
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    European University at St Petersburg
    European University at St. Petersburg
    Authors
    Bondarkov, Sergey; Ledenev, Victor; Skougarevskiy, Dmitriy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    The Russian Financial Statements Database (RFSD) is an open, harmonized collection of annual unconsolidated financial statements of the universe of Russian firms:

    • 🔓 First open data set with information on every active firm in Russia.

    • 🗂️ First open financial statements data set that includes non-filing firms.

    • 🏛️ Sourced from two official data providers: the Rosstat and the Federal Tax Service.

    • 📅 Covers 2011-2023 initially, will be continuously updated.

    • 🏗️ Restores as much data as possible through non-invasive data imputation, statement articulation, and harmonization.

    The RFSD is hosted on 🤗 Hugging Face and Zenodo and is stored in a structured, column-oriented, compressed binary format Apache Parquet with yearly partitioning scheme, enabling end-users to query only variables of interest at scale.

    The accompanying paper provides internal and external validation of the data: http://arxiv.org/abs/2501.05841.

    Here we present the instructions for importing the data in R or Python environment. Please consult with the project repository for more information: http://github.com/irlcode/RFSD.

    Importing The Data

    You have two options to ingest the data: download the .parquet files manually from Hugging Face or Zenodo or rely on 🤗 Hugging Face Datasets library.

    Python

    🤗 Hugging Face Datasets

    It is as easy as:

    from datasets import load_dataset import polars as pl

    This line will download 6.6GB+ of all RFSD data and store it in a 🤗 cache folder

    RFSD = load_dataset('irlspbru/RFSD')

    Alternatively, this will download ~540MB with all financial statements for 2023# to a Polars DataFrame (requires about 8GB of RAM)

    RFSD_2023 = pl.read_parquet('hf://datasets/irlspbru/RFSD/RFSD/year=2023/*.parquet')

    Please note that the data is not shuffled within year, meaning that streaming first n rows will not yield a random sample.

    Local File Import

    Importing in Python requires pyarrow package installed.

    import pyarrow.dataset as ds import polars as pl

    Read RFSD metadata from local file

    RFSD = ds.dataset("local/path/to/RFSD")

    Use RFSD_dataset.schema to glimpse the data structure and columns' classes

    print(RFSD.schema)

    Load full dataset into memory

    RFSD_full = pl.from_arrow(RFSD.to_table())

    Load only 2019 data into memory

    RFSD_2019 = pl.from_arrow(RFSD.to_table(filter=ds.field('year') == 2019))

    Load only revenue for firms in 2019, identified by taxpayer id

    RFSD_2019_revenue = pl.from_arrow( RFSD.to_table( filter=ds.field('year') == 2019, columns=['inn', 'line_2110'] ) )

    Give suggested descriptive names to variables

    renaming_df = pl.read_csv('local/path/to/descriptive_names_dict.csv') RFSD_full = RFSD_full.rename({item[0]: item[1] for item in zip(renaming_df['original'], renaming_df['descriptive'])})

    R

    Local File Import

    Importing in R requires arrow package installed.

    library(arrow) library(data.table)

    Read RFSD metadata from local file

    RFSD <- open_dataset("local/path/to/RFSD")

    Use schema() to glimpse into the data structure and column classes

    schema(RFSD)

    Load full dataset into memory

    scanner <- Scanner$create(RFSD) RFSD_full <- as.data.table(scanner$ToTable())

    Load only 2019 data into memory

    scan_builder <- RFSD$NewScan() scan_builder$Filter(Expression$field_ref("year") == 2019) scanner <- scan_builder$Finish() RFSD_2019 <- as.data.table(scanner$ToTable())

    Load only revenue for firms in 2019, identified by taxpayer id

    scan_builder <- RFSD$NewScan() scan_builder$Filter(Expression$field_ref("year") == 2019) scan_builder$Project(cols = c("inn", "line_2110")) scanner <- scan_builder$Finish() RFSD_2019_revenue <- as.data.table(scanner$ToTable())

    Give suggested descriptive names to variables

    renaming_dt <- fread("local/path/to/descriptive_names_dict.csv") setnames(RFSD_full, old = renaming_dt$original, new = renaming_dt$descriptive)

    Use Cases

    🌍 For macroeconomists: Replication of a Bank of Russia study of the cost channel of monetary policy in Russia by Mogiliat et al. (2024) — interest_payments.md

    🏭 For IO: Replication of the total factor productivity estimation by Kaukin and Zhemkova (2023) — tfp.md

    🗺️ For economic geographers: A novel model-less house-level GDP spatialization that capitalizes on geocoding of firm addresses — spatialization.md

    FAQ

    Why should I use this data instead of Interfax's SPARK, Moody's Ruslana, or Kontur's Focus?hat is the data period?

    To the best of our knowledge, the RFSD is the only open data set with up-to-date financial statements of Russian companies published under a permissive licence. Apart from being free-to-use, the RFSD benefits from data harmonization and error detection procedures unavailable in commercial sources. Finally, the data can be easily ingested in any statistical package with minimal effort.

    What is the data period?

    We provide financials for Russian firms in 2011-2023. We will add the data for 2024 by July, 2025 (see Version and Update Policy below).

    Why are there no data for firm X in year Y?

    Although the RFSD strives to be an all-encompassing database of financial statements, end users will encounter data gaps:

    We do not include financials for firms that we considered ineligible to submit financial statements to the Rosstat/Federal Tax Service by law: financial, religious, or state organizations (state-owned commercial firms are still in the data).

    Eligible firms may enjoy the right not to disclose under certain conditions. For instance, Gazprom did not file in 2022 and we had to impute its 2022 data from 2023 filings. Sibur filed only in 2023, Novatek — in 2020 and 2021. Commercial data providers such as Interfax's SPARK enjoy dedicated access to the Federal Tax Service data and therefore are able source this information elsewhere.

    Firm may have submitted its annual statement but, according to the Uniform State Register of Legal Entities (EGRUL), it was not active in this year. We remove those filings.

    Why is the geolocation of firm X incorrect?

    We use Nominatim to geocode structured addresses of incorporation of legal entities from the EGRUL. There may be errors in the original addresses that prevent us from geocoding firms to a particular house. Gazprom, for instance, is geocoded up to a house level in 2014 and 2021-2023, but only at street level for 2015-2020 due to improper handling of the house number by Nominatim. In that case we have fallen back to street-level geocoding. Additionally, streets in different districts of one city may share identical names. We have ignored those problems in our geocoding and invite your submissions. Finally, address of incorporation may not correspond with plant locations. For instance, Rosneft has 62 field offices in addition to the central office in Moscow. We ignore the location of such offices in our geocoding, but subsidiaries set up as separate legal entities are still geocoded.

    Why is the data for firm X different from https://bo.nalog.ru/?

    Many firms submit correcting statements after the initial filing. While we have downloaded the data way past the April, 2024 deadline for 2023 filings, firms may have kept submitting the correcting statements. We will capture them in the future releases.

    Why is the data for firm X unrealistic?

    We provide the source data as is, with minimal changes. Consider a relatively unknown LLC Banknota. It reported 3.7 trillion rubles in revenue in 2023, or 2% of Russia's GDP. This is obviously an outlier firm with unrealistic financials. We manually reviewed the data and flagged such firms for user consideration (variable outlier), keeping the source data intact.

    Why is the data for groups of companies different from their IFRS statements?

    We should stress that we provide unconsolidated financial statements filed according to the Russian accounting standards, meaning that it would be wrong to infer financials for corporate groups with this data. Gazprom, for instance, had over 800 affiliated entities and to study this corporate group in its entirety it is not enough to consider financials of the parent company.

    Why is the data not in CSV?

    The data is provided in Apache Parquet format. This is a structured, column-oriented, compressed binary format allowing for conditional subsetting of columns and rows. In other words, you can easily query financials of companies of interest, keeping only variables of interest in memory, greatly reducing data footprint.

    Version and Update Policy

    Version (SemVer): 1.0.0.

    We intend to update the RFSD annualy as the data becomes available, in other words when most of the firms have their statements filed with the Federal Tax Service. The official deadline for filing of previous year statements is April, 1. However, every year a portion of firms either fails to meet the deadline or submits corrections afterwards. Filing continues up to the very end of the year but after the end of April this stream quickly thins out. Nevertheless, there is obviously a trade-off between minimization of data completeness and version availability. We find it a reasonable compromise to query new data in early June, since on average by the end of May 96.7% statements are already filed, including 86.4% of all the correcting filings. We plan to make a new version of RFSD available by July.

    Licence

    Creative Commons License Attribution 4.0 International (CC BY 4.0).

    Copyright © the respective contributors.

    Citation

    Please cite as:

    @unpublished{bondarkov2025rfsd, title={{R}ussian {F}inancial {S}tatements {D}atabase}, author={Bondarkov, Sergey and Ledenev, Victor and Skougarevskiy, Dmitriy}, note={arXiv preprint arXiv:2501.05841}, doi={https://doi.org/10.48550/arXiv.2501.05841}, year={2025}}

    Acknowledgments and Contacts

    Data collection and processing: Sergey Bondarkov, sbondarkov@eu.spb.ru, Viktor Ledenev, vledenev@eu.spb.ru

    Project conception, data validation, and use cases: Dmitriy Skougarevskiy, Ph.D.,

  4. Time Series Forecasting Using Prophet in R

    • kaggle.com
    zip
    Updated Jul 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vikram amin (2023). Time Series Forecasting Using Prophet in R [Dataset]. https://www.kaggle.com/datasets/vikramamin/time-series-forecasting-using-prophet-in-r
    Explore at:
    zip(9000 bytes)Available download formats
    Dataset updated
    Jul 25, 2023
    Authors
    vikram amin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Main objective : To forecast the page visits of a website
    • Tool : Time Series Forecasting using Prophet in R.
    • Steps:
    • Read the data
    • Data Cleaning: Checking data types, date formats and missing data https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F56d7b1edf4f51157804e81b02c032e4d%2FPicture1.png?generation=1690271521103777&alt=media" alt="">
    • Run libraries (dplyr, ggplot2, tidyverse, lubridate, prophet, forecast)
    • Change the Date column from character vector to date and change data format using lubridate package
    • Rename the column "Date" to "ds" and "Visits" to "y".
    • Treat "Christmas" and "Black.Friday" as holiday events. As the data ranges from 2016 to 2020, there will be 5 Christmas and 5 Black Friday days.
    • We will look at the impact of Christmas 3 days prior and 3 days later from Christmas date on "Visits" and 3 days prior and 1 day later for Black Friday
    • We create two data frames called Christmas and Black.Friday and merge the two into a data frame called "holidays". https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fd07b366be2050fefe6a62563b6abac0c%2FPicture2.png?generation=1690272066356516&alt=media" alt="">
    • We create train and test data. In train data & test data, we select only 3 variables namely ds, y , Easter. In train data, ds contains data before 2020-12-01 and test data contains data equal to and after 2020-12-01 (31 days) data
    • Train Data
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F8f3f58fe40b29b276bb7103cb1dfdde1%2FPicture3.png?generation=1690272272038405&alt=media" alt="">
    • Test Data
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fb4362117f46aeb210dad23f07d3ecb39%2FPicture4.png?generation=1690272400355824&alt=media" alt="">
    • Use prophet model which will include multiple parameter. We are going with the default parameters. Thereafter, we add the external regressor "Easter".
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F7325be63d887372cc5764ddf29a94310%2FPicture5.png?generation=1690272892963939&alt=media" alt="">
    • We create the future data frame for forecasting and name the data frame "future". It will include "m" and 31 days of the test data. We then predict this future data frame and create a new data frame called "forecast".
    • Forecast data frame consists of 1827 rows and 34 variables. This shows the external Regressor (Easter) value is 0 through the entire time period. This shows that "Easter" has no impact or effect on "Visits".
    • yhat stands for the predicted value (predicted visits).
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fae5c9414d1b1bbb2670b372a326970a5%2FPicture6.png?generation=1690273558489681&alt=media" alt="">
    • We try to understand the impact of Holiday events "Christmas" and "Black.Friday"
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F5a36cc5308f9e46f0b63fa8e37c4b932%2FPicture7.png?generation=1690273814760538&alt=media" alt="">
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F8cc3dd0581db1e8b9d542d9a524abd39%2FPicture8.png?generation=1690273879506571&alt=media" alt="">
    • We plot the forecast.
    • plot(m,forecast) https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fa7968ff05abdd5b4e789f3723b41c4ed%2FPicture9.png?generation=1690274020880594&alt=media" alt="">
    • blue is predicted value(yhat) and black is actual value(y) and blue shaded regions are the yhat_upper and yhat_lower values
    • prophet_plot_components(m,forecast) https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F52408afb8c71118ef6729420085875e8%2FPicture10.png?generation=1690274184325240&alt=media" alt="">
    • Trend indicates that the page visits remained constant from Jan'16 to Mid'17 and thereafter there was an upswing from Mid'19 to End of 2020
    • From Holidays, we can make out that Christmas had a negative effect on page visits whereas Black Friday had a positive effect on page visits
    • Weekly seasonality indicates that page visits tend to remain the highest from Monday to Thursday and starts going down thereafter
    • Yearly seasonality indicates that page visits are the highest in Apr and then starts going down thereafter with
    • Oct having reaching the bottom point
    • External regressor "Easter" has no impact on page visits
    • plot(m,forecast) + add_changepoints_to_plot(m)
    • https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F1253a0e381ae04d3156a4b098dafb2ca%2FPicture11.png?generation=1690274373570449&alt=media" alt="">
    • Trend which is indicated by the red line starts moving upwards from Mid 2019 to 2020 onwards
    • We check for acc...
  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
Organization logo

Google Data Analytics Case Study Cyclistic

Difference between Casual vs Member in Cyclistic Riders

Explore at:
zip(1299 bytes)Available download formats
Dataset updated
Sep 27, 2022
Authors
Udayakumar19
Description

Introduction

Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

Scenario

You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

Ask

How do annual members and casual riders use Cyclistic bikes differently?

Guiding Question:

What is the problem you are trying to solve?
  How do annual members and casual riders use Cyclistic bikes differently?
How can your insights drive business decisions?
  The insight will help the marketing team to make a strategy for casual riders

Prepare

Guiding Question:

Where is your data located?
  Data located in Cyclistic organization data.

How is data organized?
  Dataset are in csv format for each month wise from Financial year 22.

Are there issues with bias or credibility in this data? Does your data ROCCC? 
  It is good it is ROCCC because data collected in from Cyclistic organization.

How are you addressing licensing, privacy, security, and accessibility?
  The company has their own license over the dataset. Dataset does not have any personal information about the riders.

How did you verify the data’s integrity?
  All the files have consistent columns and each column has the correct type of data.

How does it help you answer your questions?
  Insights always hidden in the data. We have the interpret with data to find the insights.

Are there any problems with the data?
  Yes, starting station names, ending station names have null values.

Process

Guiding Question:

What tools are you choosing and why?
  I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.

Have you ensured the data’s integrity?
 Yes, the data is consistent throughout the columns.

What steps have you taken to ensure that your data is clean?
  First duplicates, null values are removed then added new columns for analysis.

How can you verify that your data is clean and ready to analyze? 
 Make sure the column names are consistent thorough out all data sets by using the “bind row” function.

Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
Combine the all dataset into single data frame to make consistent throught the analysis.
Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
Removed the null rows from the dataset by using the “na.omit function”
Have you documented your cleaning process so you can review and share those results? 
  Yes, the cleaning process is documented clearly.

Analyze Phase:

Guiding Questions:

How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

What surprises did you discover in the data?
  Casual member ride duration is higher than the annual members
  Causal member widely uses docked bike than the annual members
What trends or relationships did you find in the data?
  Annual members are used mainly for commute purpose
  Casual member are preferred the docked bikes
  Annual members are preferred the electric or classic bikes
How will these insights help answer your business questions?
  This insights helps to build a profile for members

Share

Guiding Quesions:

Were you able to answer the question of how ...
Search
Clear search
Close search
Google apps
Main menu