5 datasets found
  1. a

    Connecticut 3D Lidar Viewer

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • +1more
    Updated Jan 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 8, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  2. a

    OregonAddress

    • hub.arcgis.com
    • data.oregon.gov
    • +1more
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). OregonAddress [Dataset]. https://hub.arcgis.com/content/d52415395ceb4b0faea09b59cec5277f
    Explore at:
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    State of Oregon
    Description

    The new Oregon Address Geocoder is used to find the location coordinates for street addresses in the State of Oregon. This service is:FreePublicUpdated regularlyOutputs location coordinates in Oregon Lambert, feet (SRID 2992)Uses over 2 million address points and 288,000 streets for referenceIt is an ArcGIS multirole locator with two roles:Point Address - Generally more accurate results from rooftop location points. Includes a Subaddress if a unit number is located.Street Address - Less accurate results from an estimated distance along a street centerline address range if a Point Address was not found.Instructions for using the Geocoder via ArcGIS Pro, ArcGIS Online, and REST Services are below:ArcGIS ProWeb ServicesArcGIS Online

  3. g

    Historical coregonine spawning, nursery, and general occurrence point...

    • gimi9.com
    • data.usgs.gov
    • +2more
    Updated Oct 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Historical coregonine spawning, nursery, and general occurrence point locations in the Great Lakes of North America and their tributaries [Dataset]. https://gimi9.com/dataset/data-gov_historical-coregonine-spawning-nursery-and-general-occurrence-point-locations-in-the-great
    Explore at:
    Dataset updated
    Oct 13, 2024
    Area covered
    The Great Lakes, North America
    Description

    The dataset presented here, a historical coregonine spawning database, or CORHIST for short, is the result of several years of coordinated research in archives, libraries, and field stations, to track down evidence of spawning locations for the Coregoninae sub-family of ciscoes and whitefishes in the Great Lakes of North America and their tributaries. Our objective was to accurately identify location information to coordinates and add all associated data and metadata to a database built specifically for these types of records (a database capable of storing historical, geospatial, and biological data). Data for a total of 11 accepted species of coregonines are included in this dataset. Spawning or nursery habitat designations were assigned based on a wide-range of evidence from original sources, including descriptions of physiology, ontogeny, and behaviors, interviews, first-hand and Indigenous Ecological Knowledge, and by our own examination of museum specimens. Georeferencing was completed using evidence from original records, including navigational information such as dead reckonings, landmarks like islands, lighthouses, reefs, and river mouths, and by using depth and substrate descriptions. Occasionally, supplemental sources including various historical maps and/or published bathymetry and substrate layers were used to assist in georeferencing points. Data points were summarized and quality-checked using ArcMap 10.8 and ArcGIS Pro (datum: WGS84). Reference tables are also included with this dataset.

  4. a

    RPBB PCH Virginia 20241206

    • conservation-abra.hub.arcgis.com
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny-Blue Ridge Alliance (2025). RPBB PCH Virginia 20241206 [Dataset]. https://conservation-abra.hub.arcgis.com/datasets/abra::rpbb-pch-virginia-20241206
    Explore at:
    Dataset updated
    Jan 16, 2025
    Dataset authored and provided by
    Allegheny-Blue Ridge Alliance
    Area covered
    Description

    Purpose:This feature layer describes the boundaries of Proposed Critical Habitat for the Rusty Patched Bumble Bee in Virginia and West Virginia.Source & Date:Data was downloaded from Regulations.gov, Document FWS-R3-ES-2024-0132-0016: CORRECTED_Rusty Patched Bumble Bee Critical Habitat Plot Points. Posted by the Fish and Wildlife Service on Dec 6, 2024 and accessible here as of 1/16/2025.Processing:The data was downloaded as a list of Latitude and Longitude coordinates in a PDF document. The PPDF was converted to Microsoft Excel format using Nitro Pro PDF editor. Data was cleaned of extra tabs, spaces, etc., given an OBJECTID field and saved as a comma-separated values (CSV) text file. The CSV file was loaded into ArcGIS Pro and converted to a point feature class using Latitude and Longitude as Y & X coordinates, respectively. The point featureclass was converted to polyline using the Points to Line script in Data management Tools - Features tool set. The polyline feature was converted to Polygon using Feature to Polygon (again in Features tool set). Fields for Square Miles (SqMi) and Acres were added and calculated with Calculate Geometry. The polygon feature class was exported to shapefile, zipped and uploaded to ArcGIS Online, where it was published as a feature layer.Symbology:Varies - default is medium blue polygon with dark gray outline.

  5. BNG locator

    • hub.arcgis.com
    Updated Dec 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK (2015). BNG locator [Dataset]. https://hub.arcgis.com/content/a1e2e8fae5734356829bd7a8967c8281
    Explore at:
    Dataset updated
    Dec 15, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK
    Description

    This is a Locator for finding British National Grid references. It provides lookups on the British National Grid, which can be applied to all Ordnance Survey maps of Great Britain. You can use it to query by absolute coordinates or by tile. Both types of query return the centre point of the corresponding 10k grid square BNG tile. Enter grid coordinates as absolute XY: 123456, 654321 Enter tile queries as Grid squares: TL44; as sub tile: TQ1234 or; as quadrant SN1234SE

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4

Connecticut 3D Lidar Viewer

Explore at:
Dataset updated
Jan 8, 2020
Dataset authored and provided by
UConn Center for Land use Education and Research
Description

Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

Search
Clear search
Close search
Google apps
Main menu