Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.
The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 90 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.
The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.
The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
Facebook
TwitterThis dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into Major Land Resource Area (MO)-wide extents, and adding a MO-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a MO-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data. The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Gridded Soil Survey Geographic (gSSURGO) Database State-tile Package" product is derived from the Soil Survey Geographic (2.2) Database dated October 1, 2019. The gSSURGO data were prepared by merging SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table that contains “ready to map attributes”.
SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map” attributes. The gridded map layer is offered in an ArcGIS™ 10.0 file geodatabase raster format.
The raster and vector map data have a State-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key (MUKEY). A unique map unit key is used to link raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.
Constraints:
Not to be used for navigation, for informational purposes only. See full disclaimer for more information
Facebook
TwitterThis dataset contains the common Map Unit attributes for each polygon within the gSSURGO database plus NRCS derived attributes from a data summary table called the National Valu Added Look Up (valu) Table #1. It is comprised of 57 pre-summarized or "ready to map" derived soil survey geographic database attributes including soil organic carbon, available water storage, crop productivity indices, crop root zone depths, available water storage within crop root zone depths, drought vulnerable soil landscapes, and potential wetland soil landscapes. Related metadata values for themes are included. These attribute data are pre-summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. These themes were prepared to better meet the mapping needs of users of soil survey information and can be used with both SSURGO and Gridded SSURGO (gSSURGO) datasets. Gridded SSURGO (gSSURGO) Database is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.VALU Table Content:The map unit average Soil Organic Carbon (SOC) values are given in units of g C per square meter for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), o-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average Available Water Storage (AWS) values are given in units of millimeters for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), 0-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average National Commodity Crop Productivity Index (NCCPI) values (low index values indicate low productivity and high index values indicate high productivity) are provided for major earthy components. NCCPI values are included for corn/soybeans, small grains, and cotton crops. Of these crops, the highest overall NCCPI value is also identified. Earthy components are those soil series or higher level taxa components that can support crop growth. Major components are those soil components where the majorcompflag = 'Yes' in the SSURGO component table. A map unit percent composition for earthy major components is provided. See Dobos, R. R., H. R. Sinclair, Jr, and M. P. Robotham. 2012. National Commodity Crop Productivity Index (NCCPI) User Guide, Version 2. USDA-NRCS. Available at: ftp://ftp-fc.sc.egov.usda.gov/NSSC/NCCPI/NCCPI_user_guide.pdfThe map unit average root zone depth values for commodity crops are given in centimeters for major earthy components. Criteria for root-limiting soil depth include: presence of hard bedrock, soft bedrock, a fragipan, a duripan, sulfuric material, a dense layer, a layer having a pH of less than 3.5, or a layer having an electrical conductivity of more than 12 within the component soil profile. If no root-restricting zone is identified, a depth of 150 cm is used to approximate the root zone depth (Dobos et al., 2012). The map unit average available water storage within the root zone depth for major earthy components value is given in millimeters.Drought vulnerable soil landscapes comprise those map units that have available water storage within the root zone for commodity crops that is less than or equal to 6 inches (152 mm) expressed as "1" for a drought vulnerable soil landscape map unit or "0" for a nondroughty soil landscape map unit or NULL for miscellaneous areas (includes water bodies).The potential wetland soil landscapes (PWSL version 1) information is given as the percentage of the map unit (all components) that meet the criteria for a potential wetland soil landscape. See table column (field) description for criteria details. If water was determined to account for 80 or greater percent of a map unit, a value of 999 was used to indicate a water body. This is not a perfect solution, but is helpful to identifying a general water body class for mapping.The map unit sum of the component percentage representative values is also provided as useful metadata. For all valu table columns, NULL values are presented where data are incomplete or not available. How NoData or NULL values and incomplete data were handled during VALU table SOC and AWS calculations:The gSSURGO calculations for SOC and AWS as reported in the VALU table use the following data checking and summarization rules. The guiding principle was to only use the official data in the SSURGO database, and not to make assumptions in case there were some data entry errors. However, there were a few exceptions to this principle if there was a good reason for a Null value in a critical variable, or to accommodate the data coding conventions used in some soil surveys.Horizon depths considerations:If the depth to the top of the surface horizon was missing, but otherwise the horizon depths were all okay, then the depth to the top of the surface horizon (hzdept_r) was set to zero.If the depth to the bottom of the last horizon was missing, and the horizon represented bedrock or had missing bulk density, the depth to the bottom was set to equal to the depth to the top of the same horizon (hzdepb_r = hzdept_r), effectively giving the horizon zero thickness (and thus zero SOC or AWS), but not blocking calculation of other horizons in the profile due to horizon depth errors.Other types of horizon depth errors were considered uncorrectable, and led to all horizon depths for the component being set to a NoData value, effectively eliminating the component from the analysis. The errors included gaps or overlaps in the horizon depths of the soil profile, other cases of missing data for horizon depths, including missing data for the bottom depth of the last horizon if the soil texture information did not indicate bedrock and a bulk density value was coded. The SOC or AWS values were effectively set to zero for components eliminated in this way, so the values at the map unit level could be an underestimate for some soils.Horizon rock fragment considerations:Part of the algorithm for calculating the SOC requires finding the volume of soil that is not rock. This requires three SSURGO variables that indicate rock fragments (fraggt10_r, frag3to10_r, and sieveno10_r). If the soil is not organic, and any of these are missing, then the ratio of the volume of soil fines to the total soil volume was set to “NoData†, and the SOC results were coded as “NoData†and effectively set to zero for the horizon. If the soil is organic, then it may be logical that no measurement of rock fragments was made, and default values for the “zero rock†situation was assumed for these variables (i.e., fraggt10_r = 0, frag3to10_r = 0, sieveno10_r = 100). Organic soils were identified by an “O†in the horizon designator or the texture code represented “Peat†, “Muck†or “Decomposed Plant Material†. If all three of the fragment variables were present, but indicated more than 100% rock, then 100% rock was assumed (zero volume of soil and thus zero for SOC). The rock fragment variables do not influence the AWS calculation because rock content is already accounted for in the available water capacity (awc_r) variable at the horizon level.Horizon to component summary:To summarize data from the horizon level to the component level, the evaluation proceeded downward from the surface. If a valid value for AWS could not be calculated for any horizon, then the result for that horizon and all deeper horizons was set to NoData. The same rule was separately applied to the SOC calculation, so it was possible to have results for SOC but not AWS, or vice versa.Component to mapunit summary:To summarize data from the component level to the map unit level, the component percentages must be valid. There are tests both of the individual component percentage (comppct_r) data, and also of the sum of the component percentages at the map unit level (mu_sum_comppct_r). For the gSSURGO VALU table, the following rules were applied for the individual components: 1) The comppct_r must be in the range from 0 to 100, inclusive. 2) Individual components with a comppct_r that was Null (nothing coded) were ignored. A zero comppct_r value excludes
Facebook
TwitterThe gSSURGO dataset provides detailed soil survey mapping in raster format with ready-to-map attributes organized in statewide tiles for desktop GIS. gSSURGO is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO generally has the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes and are derived from properties and characteristics stored in the National Soil Information System (NASIS).
The gSSURGO data were prepared by merging the traditional vector-based SSURGO digital map data and tabular data into statewide extents, adding a statewide gridded map layer derived from the vector layer, and adding a new value-added look up table (valu) containing ready-to-map attributes. The gridded map layer is in an ArcGIS file geodatabase in raster format, thus it has the capacity to store significantly more data and greater spatial extents than the traditional SSURGO product. The raster map data have a 10-meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link the raster cells and polygons to attribute tables.
For more information, see the gSSURGO webpage: https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-soil-survey-geographic-gssurgo-database
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wadi Hasa Sample Dataset — GRASS GIS Location
Version 1.0 (2025-09-19)
Overview
--------
This archive contains a complete GRASS GIS *Location* for the Wadi Hasa region (Jordan), including base data and exemplar analyses used in the Geomorphometry chapter. It is intended for teaching and reproducible research in archaeological GIS.
How to use
----------
1) Unzip the archive into your GRASSDATA directory (or a working folder) and add the Location to your GRASS session.
2) Start GRASS and open the included workspace (Workspace.gxw) or choose a Mapset to work in.
3) Set the computational region to the default extent/resolution for reproducibility:
g.region n=3444220 s=3405490 e=796210 w=733450 nsres=30 ewres=30 -p
4) Inspect layers as needed:
g.list type=rast,vector
r.info
Citation & License
------------------
Please cite this dataset as:
Isaac I. Ullah. 2025. *Wadi Hasa Sample Dataset (GRASS GIS Location)*. Zenodo. https://doi.org/10.5281/zenodo.17162040
All contents are released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. The original Wadi Hasa survey dataset is available at: https://figshare.com/articles/dataset/Wadi_Hasa_Ancient_Pastoralism_Project/1404216 The original Wadi Hasa survey dataset is available at: https://figshare.com/articles/dataset/Wadi_Hasa_Ancient_Pastoralism_Project/1404216
Coordinate Reference System
---------------------------
- Projection: UTM, Zone 36N
- Datum/Ellipsoid: WGS84
- Units: meter
- Coordinate system and units are defined in the GRASS Location (PROJ_INFO/UNITS).
Default Region (computational extent & resolution)
--------------------------------------------------
- North: 3444220
- South: 3405490
- East: 796210
- West: 733450
- Resolution: 30 (NS), 30 (EW)
- Rows x Cols: 1291 x 2092 (cells: 2700772)
Directory / Mapset Structure
----------------------------
This Location contains the following Mapsets (data subprojects), each with its own raster/vector layers and attribute tables (SQLite):
- Boolean_Predictive_Modeling: 8 raster(s), 4 vector(s)
- ISRIC_soilgrid: 31 raster(s), 0 vector(s)
- Landsat_Imagery: 3 raster(s), 0 vector(s)
- Landscape_Evolution_Modeling: 41 raster(s), 0 vector(s)
- Least_Cost_Analysis: 13 raster(s), 4 vector(s)
- Machine_Learning_Predictive_Modeling: 70 raster(s), 11 vector(s)
- PERMANENT: 4 raster(s), 2 vector(s)
- Sentinel2_Imagery: 4 raster(s), 0 vector(s)
- Site_Buffer_Analysis: 0 raster(s), 2 vector(s)
- Terrain_Analysis: 27 raster(s), 2 vector(s)
- Territory_Modeling: 14 raster(s), 2 vector(s)
- Trace21k_Paleoclimate_Downscale_Example: 4 raster(s), 2 vector(s)
- Visibility_Analysis: 11 raster(s), 5 vector(s)
Data Content (summary)
----------------------
- Total raster maps: 230
- Total vector maps: 34
Raster resolutions present:
- 10 m: 13 raster(s)
- 30 m: 183 raster(s)
- 208.01 m: 2 raster(s)
- 232.42 m: 30 raster(s)
- 1000 m: 2 raster(s)
Major content themes include:
- Base elevation surfaces and terrain derivatives (e.g., DEMs, slope, aspect, curvature, flow accumulation, prominence).
- Hydrology, watershed, and stream-related layers.
- Visibility analyses (viewsheds; cumulative viewshed analyses for Nabataean and Roman towers).
- Movement and cost-surface analyses (isotropic/anisotropic costs, least-cost paths, time-to-travel surfaces).
- Predictive modeling outputs (boolean/inductive/deductive; regression/classification surfaces; training/test rasters).
- Satellite imagery products (Landsat NIR/RED/NDVI; Sentinel‑2 bands and RGB composite).
- Soil and surficial properties (ISRIC SoilGrids 250 m products).
- Paleoclimate downscaling examples (CHELSA TraCE21k MAT/AP).
Vectors include:
- Archaeological point datasets (e.g., WHS_sites, WHNBS_sites, Nabatean_Towers, Roman_Towers).
- Derived training/testing samples and buffer polygons for modeling.
- Stream network and paths from least-cost analyses.
Important notes & caveats
-------------------------
- Mixed resolutions: Analyses span 10 m (e.g., Sentinel‑2 composites, some derived surfaces), 30 m (majority of terrain and modeling rasters), ~232 m (SoilGrids products), and 1 km (CHELSA paleoclimate). Set the computational region appropriately (g.region) before processing or visualization.
- NoData handling: The raw SRTM import (Hasa_30m_SRTM) reports extreme min/max values caused by nodata placeholders. Use the clipped/processed DEMs (e.g., Hasa_30m_clipped_wshed*) and/or set nodata with r.null as needed.
- Masks: MASK rasters are provided for analysis subdomains where relevant.
- Attribute tables: Vector attribute data are stored in per‑Mapset SQLite databases (sqlite/sqlite.db) and connected via layer=1.
Provenance (brief)
------------------
- Primary survey points and site datasets derive from the Wadi Hasa projects (see Figshare record above).
- Base elevation and terrain derivatives are built from SRTM and subsequently processed/clipped for the watershed.
- Soil variables originate from ISRIC SoilGrids (~250 m).
- Paleoclimate examples use CHELSA TraCE21k surfaces (1 km) that are interpolated to higher resolutions for demonstration.
- Satellite imagery layers are derived from Landsat and Sentinel‑2 scenes.
Reproducibility & quick commands
--------------------------------
- Restore default region: g.region n=3444220 s=3405490 e=796210 w=733450 nsres=30 ewres=30 -p
- Set region to a raster: g.region raster=
Change log
----------
- v1.0: Initial public release of the teaching Location on Zenodo (CC BY 4.0).
Contact
-------
For questions, corrections, or suggestions, please contact Isaac I. Ullah
Facebook
TwitterThe Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities. Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: May 7, 2025 This layer is derived from the May 7, 2025 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 94 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 94 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel. Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Data DictionaryMaking a copy of your area of interest using copyraster in arcgis pro will copy the layer's attribute table to your network alongside the local output raster. The raster attribute table in the copied raster will contain the flood zone, zone subtype, and special flood hazard area true/false flag which corresponds to each value in the layer for your area of interest. For your convienence, we also included a table in CSV format in the box below as a data dictionary you can use as an index to every value in the layer. Value,FLD_ZONE,ZONE_SUBTY,SFHA_TF 2,A,, 3,A,,F 4,A,,T 5,A,,T 6,A,,T 7,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 8,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 9,A,ADMINISTRATIVE FLOODWAY,T 10,A,COASTAL FLOODPLAIN,T 11,A,FLOWAGE EASEMENT AREA,T 12,A99,,T 13,A99,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 14,AE,,F 15,AE,,T 16,AE,,T 17,AE,,T 18,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 19,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 20,AE,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",T 21,AE,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",T 22,AE,ADMINISTRATIVE FLOODWAY,T 23,AE,AREA OF SPECIAL CONSIDERATION,T 24,AE,COASTAL FLOODPLAIN,T 25,AE,COLORADO RIVER FLOODWAY,T 26,AE,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 27,AE,COMMUNITY ENCROACHMENT,T 28,AE,COMMUNITY ENCROACHMENT AREA,T 29,AE,DENSITY FRINGE AREA,T 30,AE,FLOODWAY,T 31,AE,FLOODWAY CONTAINED IN CHANNEL,T 32,AE,FLOODWAY CONTAINED IN STRUCTURE,T 33,AE,FLOWAGE EASEMENT AREA,T 34,AE,RIVERINE FLOODWAY IN COMBINED RIVERINE AND COASTAL ZONE,T 35,AE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 36,AE,STATE ENCROACHMENT AREA,T 37,AH,,T 38,AH,,T 39,AH,FLOODWAY,T 40,AO,,T 41,AO,COASTAL FLOODPLAIN,T 42,AO,FLOODWAY,T 43,AREA NOT INCLUDED,,F 44,AREA NOT INCLUDED,,T 45,AREA NOT INCLUDED,,U 46,D,,F 47,D,,T 48,D,AREA WITH FLOOD RISK DUE TO LEVEE,F 49,OPEN WATER,,F 50,OPEN WATER,,T 51,OPEN WATER,,U 52,V,,T 53,V,COASTAL FLOODPLAIN,T 54,VE,,T 55,VE,,T 56,VE,COASTAL FLOODPLAIN,T 57,VE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 58,X,,F 59,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,F 60,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,T 61,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,U 62,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,F 63,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,F 64,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COASTAL ZONE,F 65,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COMBINED RIVERINE AND COASTAL ZONE,F 66,X,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",F 67,X,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",F 68,X,1 PCT DEPTH LESS THAN 1 FOOT,F 69,X,1 PCT DRAINAGE AREA LESS THAN 1 SQUARE MILE,F 70,X,1 PCT FUTURE CONDITIONS,F 71,X,1 PCT FUTURE CONDITIONS CONTAINED IN STRUCTURE,F 72,X,"1 PCT FUTURE CONDITIONS, COMMUNITY ENCROACHMENT",F 73,X,"1 PCT FUTURE CONDITIONS, FLOODWAY",F 74,X,"1 PCT FUTURE IN STRUCTURE, COMMUNITY ENCROACHMENT",F 75,X,"1 PCT FUTURE IN STRUCTURE, FLOODWAY",F 76,X,AREA OF MINIMAL FLOOD HAZARD, 77,X,AREA OF MINIMAL FLOOD HAZARD,F 78,X,AREA OF MINIMAL FLOOD HAZARD,T 79,X,AREA OF MINIMAL FLOOD HAZARD,U 80,X,AREA OF SPECIAL CONSIDERATION,F 81,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,F 82,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 83,X,FLOWAGE EASEMENT AREA,F 84,X,1 PCT FUTURE CONDITIONS,T 85,AH,COASTAL FLOODPLAIN,T 86,AE,,U 87,AE,FLOODWAY,F 88,X,AREA WITH REDUCED FLOOD HAZARD DUE TO ACCREDITED LEVEE SYSTEM,F 89,X,530,F 90,VE,100,T 91,AE,100,T 92,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO LEVEE SYSTEM,T 93,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO NON-ACCREDITED LEVEE SYSTEM,T 94,A,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 250,AREA NOT INCLUDED,Not Mapped by FEMA, Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThis is the 2024 CWPP WUI data for the Fergus County. It was converted to polygon format by Taylor Greenup with USDA Forest Service on December 6, 2024 after meeting with Steve Fanning and Andrew Oestreich from Fergus County with Liz Hertz MT DNRC for discussion. Using the Raster to Polygon ArcPro geoprocessing tool, the Functional WUI raster layer that was provided by the county was converted to polygon for the following class values: Direct Exposure, Indirect Exposure, Limited Exposure, Critical Fireshed and Nonburnable Fireshed. The option to simplify the polygons and create multipart polygons was selected. Once the data were in polygon format, all the values were merged into one multipart polygon effectively leaving one row of data in the attribute table. A new field was added, 'Category', and populated with the text 'Fergus County 2024 CWPP WUI', and 2 non-applicable fields for the raster values were deleted.
Facebook
TwitterReason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly
Facebook
TwitterUpstream watershed condition is very important in determining the nutrient, sediment, and contaminant loads entering a lake. All developed and agricultural land cover categories (disturbance) were added to quantify the amount of disturbed landcover that may negatively affect water quality entering the lake. The nearshore zone is of higher value compared with the open water zone for both ecological and cultural reasons. The nearshore zone potentially supports higher productivity of benthos, macrophytes, and is used by many species for spawning. It is also the portion of the lake that is typically most accessible for public recreation.1. Preparing the NLCD: a. Using NLCD 2021 set open water values to null – open water should not count toward nearshore landcover condition. b. Assign each landcover type into categories of “natural” and “non-natural” c. Create a 9x9 moving window to assess the majority landcover composition in the neighborhood for each pixel. 2. Assign the amount of disturbance in the contributing watershed: a. Join the attribute table “Archetypes_rawdata_2023-10-12.csv” (LaPierre et al. 2023) to the LAGOS Lakes dataset.b. Eliminate any lakes that do not have a valid watershed value (removes 3253 or 0.7 % of lakes) c. Add the upstream watershed amounts of agricultural and developed landcover “ws_nlcd2016_totalag_pct” and “ws_nlcd2016_totaldev_pct” to get “totdev_totag”d. Classify lake water quality based on the Midwest Glacial Lakes Partnership thresholds for watershed landcover composition and convert to raster: 3 = if percent developed + percent ag in the watershed is <= 25 2 = if percent developed + percent ag in the watershed is >25 and <=60 1 = if percent developed + percent ag in the watershed is > 60 3. Nearshore delineation:a. Use a “negative buffer” to delineate a 100m buffer inside each lake polygon – the nearshore zone – and convert from vector to raster. This step is used to separate open water from nearshore and assign a higher value to the latter if the adjacent shoreline condition is mostly natural. b. Combine lake boundaries with nearshore zone delineations using “Union” – this step assigns both the open water and the nearshore with values for watershed disturbance. 4. Using results from Step 3b, convert vector to raster to get:a. the whole lake class of contributing watershed condition.b. the extent of the open water and nearshore zone5. Assign raster values of the nearshore zone by multiplying the nearshore zone value (=1) by the moving windows results from Step 1c. Nearshore areas receive a value of 1 if the majority nearshore landcover is natural, and a zero if the majority nearshore landcover is not natural. 6. Using a conditional statement, combine the results as follows: If the pixel is in nearshore zone, add the nearshore value (=1 or 0) to the whole lake contributing watershed condition score (values 1,2, or 3), otherwise the pixel is in the open water zone and receives only the whole lake contributing watershed condition score.7. Clean up errant pixels caused by non-overlapping LAGOS and NLCD open water using the condition: If the final score is NULL but there is an open water class value, then assign that value to the pixel, otherwise, keep the existing value.
Facebook
TwitterGridded SSURGO (gSSURGO) is similar to the standard product from the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey Geographic (SSURGO) Database, but is in the Environmental Systems Research Institute, Inc. (ESRI®) file geodatabase format. A file geodatabase has the capacity to store significantly more data and thus greater spatial extents than the traditional SSURGO product. This allows for statewide or even Conterminous United States (CONUS) tiling of data. gSSURGO contains all of the original soil attribute tables in SSURGO. All spatial data are stored within the geodatabase instead of externally as separate shape files. Both SSURGO and gSSURGO are considered products of the National Cooperative Soil Survey (NCSS). An important addition to the new format is a 10-meter raster (MapunitRaster_10m) of the map unit soil polygons feature class, which provides statewide coverage in a single layer. The CONUS database includes a 30-meter raster because of size constraints. This new addition provides greater performance and important analysis capabilities to users of soils data. Statewide tiles consist of soil survey areas needed to provide full coverage for a given State. In order to create a true statewide soils layer, some clipping of excess soil survey area gSSURGO data may be required. The new format also includes a national Value Added Look Up (valu) Table that has several new “ready to map” attributes.Other Documents to Reference:gSSURGO FactsheetgSSURGO User Guide ArcMap version 2.4Soil Data Development Toolbox User Guide v5 for ArcMapgSSURGO Mapping Detailed GuidegSSURGO Valu1 table column descriptions
Facebook
TwitterThis layer uses sand, silt, and clay most likely values from soilgrids.org to create texture classes. Soilgrids.org sand, silt, and clay datasets are integers that give a weight in grams in each particle class. The weight we are converting directly into percent, for example soilgrids value of 500g of sand means 50% sand ((500g/1kg) * 100 = 50%).A 100cm depth was chosen because it matches many of the world's most important crops' rooting depths. A 0 to 60cm version of this is also available.Variable mapped: Predominant USDA texture class as derived from predicted percent sand, silt, and clay.Data Projection: Goode's Homolosine (land) WKID 54052Mosaic Projection: Goode's Homolosine (land) WKID 54052Extent: World, except AntarcticaCell Size: 250 mSource Type: ThematicVisible Scale: All scales are visibleSource: SoilGrids.orgPublication Date: June 14, 2021NOTE: This layer uses the USDA texture classification system with international soil datasets, which use different particle size definitions than the USDA. Very little silt shows up in this layer, this could be a reason why.To determine the predominant soil texture we first classified texture for the following layer depths:0-5cm5-15cm15-30cm30-60cm60-100cmThen we used focal statistics with the majority option to find the majority texture class of each pixel from the five layers, weighted as follows:0-5cm * 15-15cm * 215-30cm * 330-60cm * 660-100cm * 7 (not 8, something had to break the tie and I reduced the multiplier by 1 to break ties, thinking of all soil depths the depth from 95-100cm may be the least significant in the stack overall.)-----------------------------------------------------------------Raster functions were created to classify sand, silt, and clay using the following statements in raster calculator:Sand Con((( Silt + ( 1.5 * Clay )) < 150 ), 1, 0)Loamy Sand Con(((Silt + (1.5 * Clay)) >= 150) & ((Silt + (2 * Clay)) < 300),2, 0)Sandy Loam Con(((Clay
=70)&(Clay<200)&(Sand>520)&((Silt + (2 * Clay)) = 300))|((Clay<70)&(Silt<500)&((Silt + (2 * Clay)) = 300)),4, 0)Loam Con(((Clay>=70) & (Clay<270) & (Silt>=280) & (Silt<500) & (Sand<=520)),8 ,0)Silt LoamCon((((Silt>=500) & (Clay>=120) & (Clay<270)) | ((Silt>=500) & (Silt<800) & (Clay<120))),16 , 0)SiltCon(((Silt >= 800)&(Clay<120)),32 ,0)Sandy Clay LoamCon(((Clay>=200) & (Clay < 350) & (Silt < 280) & (Sand > 450)),64 ,0)Clay LoamCon(((Clay >= 270) & (Clay<400) & (Sand > 200) & (Sand <= 450)), 128, 0)Silty Clay LoamCon(((Clay >= 270) & (Clay < 400) & (Sand <= 200)),256 ,0)Sandy ClayCon(((Clay >= 350) & (Sand > 450)) ,512 , 0)Silty Clay Con(((Clay >= 400) & (Silt >= 400)), 1024, 0)Clay Con(((Clay>=400) & (Sand <= 450) & (Silt < 400)) , 2048 , 0 )These conditionals were used on the "mean" soilgrids.org rasters for silt, sand, and clay on rasters representing the following depths:0-5 cm below the land surface5-15cm below the land surface15-30cm below the land surface30-60cm below the land surface60-100cm below the land surfaceThe conditionals were just summed together to create check rasters for each depth. All analysis was done in soilgrids.org own Goode's Homolosine projection (land) in ArcGIS Pro. The data were served in this same projection in ArcGIS Image for ArcGIS Online.---------------------------------------------------------------------------------------------------At first, the classes were given a value of 1, 2, 4, 8, 16, 32 and so on, then were added together. This is so we could see if some classes were overlapping others. We continued to troubleshoot the above definitions until there were no overlaps and as few values of 0 as possible. Once the overlaps and misses were fixed, the dataset was reclassed into values of 1-13. An attribute table was built to drive popups and a legend.
Facebook
Twitter2023 marks the seventh year of using the CDL Method for the whole state of Utah. This method utilizes the Cropland Data Layer from the USDA which provides acreage estimates for major commodities.Feature Classes are loaded onto tablet PCs and Field crews are sent to label the crop or land cover type and irrigation method for a subset of select fields or polygons. Each tablet PC is attached to a GPS unit for real-time tracking to continuously update the field crew’s location during the field labeling process. Digitizing is done as Geodatabase feature classes using ArcPro 3.2.1 with Sentinel imagery as a background with other layers added for reference. Updates to existing field boundaries of individual agricultural fields, urban areas and more are precisely digitized. Changes in irrigation type and land use are noted during this process. Cropland Data Layer (CDL) rasters from the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) are downloaded for the appropriate year. https://nassgeodata.gmu.edu/CropScape/Zonal Statistics geoprocessing tools are used to attribute the polygons with updated crop types from the CDL. The data is then run through several stages of comparison to historical inventories and quality checking in order to determine and produce the final attributes.AttributesLanduse– A general land cover classification differentiating how the land is usedAgriculture: Land managed for crop or livestock purposesOther: A broad classification of wildlandRiparian/Wetland: Wildland influenced by a high water table, often close to surface waterUrban: Developed areas, includes urban greenspace such as parks.Water: Surface water such as wet flats, streams, and lakes. CropGroup– Groupings of broader crop categories to allow easy access to or query of all orchard or grain types etc. Description– Attribute that describes/indicates the various crop types and land use types determined by the GIS process. IRR_Method– Crop Irrigation Method carried over from statewide field surveys ending in 2015 and updated based on imagery and yearly field checks.Drip: Water is applied through lines that slowly release water onto the surface or subsurface of the cropDry Crop: No irrigation method is applied to this agricultural land, the crop is irrigated via natural processes.Flood: Water is diverted from ditches or pipes upland from the crop in sufficient quantities to flood the irrigated plotNone: Associated with non-agricultural landSprinkler: Water is applied above the crop via sprinklers that generally move across the field.Sub-irrigated: This land does not have irrigation water applied, but due to a high water table receives more water, and is generally closely associated with a riparian areaAcres– Calculated acreage of the polygon. State– State where the polygons are found. County– County where the polygons are found. Basin– The hydrologic basin where the polygons are found, closely related to HUC 6. These basin boundaries were created by DWRe to include portions of other basins that have inter-basin flows for management purposes. SubArea– The subarea where the polygons are found, closely related to the HUC 8. Subareas are subdivisions of the larger hydrologic basins created by DWRe. Label_Class– Combination of Label and Class_Name fields created during processing that indicates the specific crop, irrigation, and whether the CDL classified the land as a similar crop or an “Other” crop. LABEL– A shorthand descriptive label for each crop description and irrigation type. Class_Name– The majority pixel value from the USDA CDL Cropscape raster layer within the polygon, may differ from final crop determination (Description). OldLanduse– Similar to Landuse, but splits the agricultural land further depending on irrigation. Pre-2017 datasets defined this as Landuse.LU_Group– These codes represent some in-house groupings that are useful for symbology and other summarizing.SURV_YEAR– Indicates which year/growing season the data represents.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.
The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 90 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.
The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.
The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).