5 datasets found
  1. n

    Dataset of development of business during the COVID-19 crisis

    • narcis.nl
    • data.mendeley.com
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Litvinova, T (via Mendeley Data) (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Litvinova, T (via Mendeley Data)
    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  2. U

    Statistical Abstract of the United States, 2011

    • dataverse-staging.rdmc.unc.edu
    Updated Oct 28, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2011). Statistical Abstract of the United States, 2011 [Dataset]. https://dataverse-staging.rdmc.unc.edu/dataset.xhtml?persistentId=hdl:1902.29/CD-10849
    Explore at:
    Dataset updated
    Oct 28, 2011
    Dataset provided by
    UNC Dataverse
    License

    https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-10849https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-10849

    Description

    "The Statistical Abstract of the United States, published since 1878, is the standard summary of statistics on the social, political, and economic organization of the United States. It is designed to serve as a convenient volume for statistical reference and as a guide to other statistical publications and sources. The latter function is served by the introductory text to each section, the source note appearing below each table, and Appendix I, which comprises the Guide to Sources of Statisti cs, the Guide to State Statistical Abstracts, and the Guide to Foreign Statistical Abstracts. The Statistical Abstract sections and tables are compiled into one Adobe PDF named StatAbstract2009.pdf. This PDF is bookmarked by section and by table and can be searched using the Acrobat Search feature. The Statistical Abstract on CD-ROM is best viewed using Adobe Acrobat 5, or any subsequent version of Acrobat or Acrobat Reader. The Statistical Abstract tables and the metropolitan areas tables from Appendix II are available as Excel(.xls or .xlw) spreadsheets. In most cases, these spreadsheet files offer the user direct access to more data than are shown either in the publication or Adobe Acrobat. These files usually contain more years of data, more geographic areas, and/or more categories of subjects than those shown in the Acrobat version. The extensive selection of statistics is provided for the United States, with selected data for regions, divisions, states, metropolitan areas, cities, and foreign countries from reports and records of government and private agencies. Software on the disc can be used to perform full-text searches, view official statistics, open tables as Lotus worksheets or Excel workbooks, and link directly to source agencies and organizations for supporting information. Except as indicated, figures are for the United States as presently constituted. Although emphasis in the Statistical Abstract is primarily given to national data, many tables present data for regions and individual states and a smaller number for metropolitan areas and cities.Statistics for the Commonwealth of Puerto Rico and for island areas of the United States are included in many state tables and are supplemented by information in Section 29. Additional information for states, cities, counties, metropolitan areas, and other small units, as well as more historical data are available in various supplements to the Abstract. Statistics in this edition are generally for the most recent year or period available by summer 2006. Each year over 1,400 tables and charts are reviewed and evaluated; new tables and charts of current interest are added, continuing series are updated, and less timely data are condensed or eliminated. Text notes and appendices are revised as appropriate. This year we have introduced 72 new tables covering a wide range of subject areas. These cover a variety of topics including: learning disability for children, people impacted by the hurricanes in the Gulf Coast area, employees with alternative work arrangements, adult computer and Internet users by selected characteristics, North America cruise industry, women- and minority-owned businesses, and the percentage of the adult population considered to be obese. Some of the annually surveyed topics are population; vital statistics; health and nutrition; education; law enforcement, courts and prison; geography and environment; elections; state and local government; federal government finances and employment; national defense and veterans affairs; social insurance and human services; labor force, employment, and earnings; income, expenditures, and wealth; prices; business enterprise; science and technology; agriculture; natural resources; energy; construction and housing; manufactures; domestic trade and services; transportation; information and communication; banking, finance, and insurance; arts, entertainment, and recreation; accommodation, food services, and other services; foreign commerce and aid; outlying areas; and comparative international statistics." Note to Users: This CD is part of a collection located in the Data Archive of the Odum Institute for Research in Social Science, at the University of North Carolina at Chapel Hill. The collection is located in Room 10, Manning Hall. Users may check the CDs out subscribing to the honor system. Items can be checked out for a period of two weeks. Loan forms are located adjacent to the collection.

  3. c

    Data from: The Bronson Files, Dataset 6, Field 13, 2014

    • s.cnmilf.com
    • datasets.ai
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). The Bronson Files, Dataset 6, Field 13, 2014 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/the-bronson-files-dataset-6-field-13-2014-e1c41
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    Dr. Kevin Bronson provides a unique nitrogen and water management in cotton agricultural research dataset for compute, including notation of field events and operations, an intermediate analysis mega-table of correlated and calculated parameters, and laboratory analysis results generated during the experimentation, plus high-resolution plot level intermediate data analysis tables of SAS process output, as well as the complete raw data sensor recorded logger outputs. This data was collected using a Hamby rig as a high-throughput proximal plant phenotyping platform. The Hamby 6000 rig Ellis W. Chenault, & Allen F. Wiese. (1989). Construction of a High-Clearance Plot Sprayer. Weed Technology, 3(4), 659–662. http://www.jstor.org/stable/3987560 Dr. Bronson modified an old high-clearance Hamby 6000 rig, adding a tank and pump with a rear boom, to perform precision liquid N applications. A Raven control unit with GPS supplied variable rate delivery options. The 12 volt Holland Scientific GeoScoutX data recorder and associated CropCircle ACS-470 sensors with GPS signal, was easy to mount and run on the vehicle as an attached rugged data acquisition module, and allowed the measuring of plants using custom proximal active optical reflectance sensing. The HS data logger was positioned near the operator, and sensors were positioned in front of the rig, on forward protruding armature attached to a hydraulic front boom assembly, facing downward in nadir view 1 m above the average canopy height. A 34-size class AGM battery sat under the operator and provided the data system electrical power supply. Data suffered reduced input from Conley. Although every effort was afforded to capture adequate quality across all metrics, experiment exterior considerations were such that canopy temperature data is absent, and canopy height is weak due to technical underperformance. Thankfully, reflectance data quality was maintained or improved through the implementation of new hardware by Bronson. See included README file for operational details and further description of the measured data signals. Summary: Active optical proximal cotton canopy sensing spatial data and including few additional related metrics and weak low-frequency ultrasonic derived height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2014 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled using a modified high-clearance Hamby spray-rig. Acquired data conforms to _location standard methodologies of the plant phenotyping. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. Additional ultrasonic data signal explanation is offered as annotated time-series charts. The weekly proximal sensing data collected include the primary canopy reflectance at six wavelengths. Lint and seed yields, first open boll biomass, and nitrogen uptake were also determined. Soil profile nitrate to 1.8 m depth was determined in 30-cm increments, before planting and after harvest. Nitrous oxide emissions were determined with 1-L vented chambers (samples taken at 0, 12, and 24 minutes). Nitrous oxide was determined by gas chromatography (electron detection detector).

  4. B

    Field Variable Permeability Tests (Slug Tests) in Boreholes Made by Driven...

    • borealisdata.ca
    • search.dataone.org
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert P. Chapuis (2024). Field Variable Permeability Tests (Slug Tests) in Boreholes Made by Driven Flush-Joint Casings, or Driven Flush-Joint Casing Permeameters, or Between Packers in Cored Rock Boreholes, or in Monitoring Wells ― Overdamped Response / Essais de perméabilité à niveau variable (Slug Tests) dans des forages faits avec un tubage battu à joints lisses, ou un perméamètre battu à joints lisses, ou entre des obturateurs dans un trou foré dans le roc, ou dans un puits de surveillance ― Cas de la réponse suramortie [Dataset]. http://doi.org/10.5683/SP2/YUAUGX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Borealis
    Authors
    Robert P. Chapuis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Civil and geological engineers have used field variable-head permeability tests (VH tests or slug tests) for over one century to assess the local hydraulic conductivity of tested soils and rocks. The water level in the pipe or riser casing reaches, after some rest time, a static position or elevation, z2. Then, the water level position is changed rapidly, by adding or removing some water volume, or by inserting or removing a solid slug. Afterward, the water level position or elevation z1(t) is recorded vs. time t, yielding a difference in hydraulic head or water column defined as Z(t) = z1(t) - z2. The water level at rest is assumed to be the piezometric level or PL for the tested zone, before drilling a hole and installing test equipment. All equations use Z(t) or Z*(t) = Z(t) / Z(t=0). The water-level response vs. time may be a slow return to equilibrium (overdamped test), or an oscillation back to equilibrium (underdamped test). This document deals exclusively with overdamped tests. Their data may be analyzed using several methods, known to yield different results for the hydraulic conductivity. The methods fit in three groups: group 1 neglects the influence of the solid matrix strain, group 2 is for tests in aquitards with delayed strain caused by consolidation, and group 3 takes into account some elastic and instant solid matrix strain. This document briefly explains what is wrong with certain theories and why. It shows three ways to plot the data, which are the three diagnostic graphs. According to experience with thousands of tests, most test data are biased by an incorrect estimate z2 of the piezometric level at rest. The derivative or velocity plot does not depend upon this assumed piezometric level, but can verify its correctness. The document presents experimental results and explains the three-diagnostic graphs approach, which unifies the theories and, most important, yields a user-independent result. Two free spreadsheet files are provided. The spreadsheet "Lefranc-Test-English-Model" follows the Canadian standards and is used to explain how to treat correctly the test data to reach a user-independent result. The user does not modify this model spreadsheet but can make as many copies as needed, with different names. The user can treat any other data set in a copy, and can also modify any copy if needed. The second Excel spreadsheet contains several sets of data that can be used to practice with the copies of the model spreadsheet. En génie civil et géologique, on a utilisé depuis plus d'un siècle les essais in situ de perméabilité à niveau variable (essais VH ou slug tests), afin d'évaluer la conductivité hydraulique locale des sols et rocs testés. Le niveau d'eau dans le tuyau ou le tubage prend, après une période de repos, une position ou élévation statique, z2. Ensuite, on modifie rapidement la position du niveau d'eau, en ajoutant ou en enlevant rapi-dement un volume d'eau, ou en insérant ou retirant un objet solide. La position ou l'élévation du niveau d'eau, z1(t), est alors notée en fonction du temps, t, ce qui donne une différence de charge hydraulique définie par Z(t) = z1(t) - z2. Le niveau d'eau au repos est supposé être le niveau piézométrique pour la zone testée, avant de forer un trou et d'installer l'équipement pour un essai. Toutes les équations utilisent Z(t) ou Z*(t) = Z(t) / Z(t=0). La réponse du niveau d'eau avec le temps peut être soit un lent retour à l'équilibre (cas suramorti) soit une oscillation amortie retournant à l'équilibre (cas sous-amorti). Ce document ne traite que des cas suramortis. Leurs données peuvent être analysées à l'aide de plusieurs méthodes, connues pour donner des résultats différents pour la conductivité hydraulique. Les méthodes appartiennent à trois groupes : le groupe 1 néglige l'influence de la déformation de la matrice solide, le groupe 2 est pour les essais dans des aquitards avec une déformation différée causée par la consolidation, et le groupe 3 prend en compte une certaine déformation élastique et instantanée de la matrice solide. Ce document explique brièvement ce qui est incorrect dans les théories et pourquoi. Il montre trois façons de tracer les données, qui sont les trois graphiques de diagnostic. Selon l'expérience de milliers d'essais, la plupart des données sont biaisées par un estimé incorrect de z2, le niveau piézométrique supposé. Le graphe de la dérivée ou graphe des vitesses ne dépend pas de la valeur supposée pour le niveau piézomé-trique, mais peut vérifier son exactitude. Le document présente des résultats expérimentaux et explique le diagnostic à trois graphiques, qui unifie les théories et donne un résultat indépendant de l'utilisateur, ce qui est important. Deux fichiers Excel gratuits sont fournis. Le fichier"Lefranc-Test-English-Model" suit les normes canadiennes : il sert à expliquer comment traiter correctement les données d'essai pour avoir un résultat indépendant de l'utilisateur. Celui-ci ne modifie pas ce...

  5. d

    Replication data for: Job-to-Job Mobility and Inflation

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faccini, Renato; Melosi, Leonardo (2023). Replication data for: Job-to-Job Mobility and Inflation [Dataset]. http://doi.org/10.7910/DVN/SMQFGS
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Faccini, Renato; Melosi, Leonardo
    Description

    Replication files for "Job-to-Job Mobility and Inflation" Authors: Renato Faccini and Leonardo Melosi Review of Economics and Statistics Date: February 2, 2023 -------------------------------------------------------------------------------------------- ORDERS OF TOPICS .Section 1. We explain the code to replicate all the figures in the paper (except Figure 6) .Section 2. We explain how Figure 6 is constructed .Section 3. We explain how the data are constructed SECTION 1 Replication_Main.m is used to reproduce all the figures of the paper except Figure 6. All the primitive variables are defined in the code and all the steps are commented in code to facilitate the replication of our results. Replication_Main.m, should be run in Matlab. The authors tested it on a DELL XPS 15 7590 laptop wih the follwoing characteristics: -------------------------------------------------------------------------------------------- Processor Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz 2.40 GHz Installed RAM 64.0 GB System type 64-bit operating system, x64-based processor -------------------------------------------------------------------------------------------- It took 2 minutes and 57 seconds for this machine to construct Figures 1, 2, 3, 4a, 4b, 5, 7a, and 7b. The following version of Matlab and Matlab toolboxes has been used for the test: -------------------------------------------------------------------------------------------- MATLAB Version: 9.7.0.1190202 (R2019b) MATLAB License Number: 363305 Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 19045) Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode -------------------------------------------------------------------------------------------- MATLAB Version 9.7 (R2019b) Financial Toolbox Version 5.14 (R2019b) Optimization Toolbox Version 8.4 (R2019b) Statistics and Machine Learning Toolbox Version 11.6 (R2019b) Symbolic Math Toolbox Version 8.4 (R2019b) -------------------------------------------------------------------------------------------- The replication code uses auxiliary files and save the pictures in various subfolders: \JL_models: It contains the equations describing the model including the observation equations and routine used to solve the model. To do so, the routine in this folder calls other routines located in some fo the subfolders below. \gensystoama: It contains a set of codes that allow us to solve linear rational expectations models. We use the AMA solver. More information are provided in the file AMASOLVE.m. The codes in this subfolder have been developed by Alejandro Justiniano. \filters: it contains the Kalman filter augmented with a routine to make sure that the zero lower bound constraint for the nominal interest rate is satisfied in every period in our sample. \SteadyStateSolver: It contains a set of routines that are used to solved the steady state of the model numerically. \NLEquations: It contains some of the equations of the model that are log-linearized using the symbolic toolbox of matlab. \NberDates: It contains a set of routines that allows to add shaded area to graphs to denote NBER recessions. \Graphics: It contains useful codes enabling features to construct some of the graphs in the paper. \Data: it contains the data set used in the paper. \Params: It contains a spreadsheet with the values attributes to the model parameters. \VAR_Estimation: It contains the forecasts implied by the Bayesian VAR model of Section 2. The output of Replication_Main.m are the figures of the paper that are stored in the subfolder \Figures SECTION 2 The Excel file "Figure-6.xlsx" is used to create the charts in Figure 6. All three panels of the charts (A, B, and C) plot a measure of unexpected wage inflation against the unemployment rate, then fits separate linear regressions for the periods 1960-1985,1986-2007, and 2008-2009. Unexpected wage inflation is given by the difference between wage growth and a measure of expected wage growth. In all three panels, the unemployment rate used is the civilian unemployment rate (UNRATE), seasonally adjusted, from the BLS. The sheet "Panel A" uses quarterly manufacturing sector average hourly earnings growth data, seasonally adjusted (CES3000000008), from the Bureau of Labor Statistics (BLS) Employment Situation report as the measure of wage inflation. The unexpected wage inflation is given by the difference between earnings growth at time t and the average of earnings growth across the previous four months. Growth rates are annualized quarterly values. The sheet "Panel B" uses quarterly Nonfarm Business Sector Compensation Per Hour, seasonally adjusted (COMPNFB), from the BLS Productivity and Costs report as its measure of wage inflation. As in Panel A, expected wage inflation is given by the... Visit https://dataone.org/datasets/sha256%3A44c88fe82380bfff217866cac93f85483766eb9364f66cfa03f1ebdaa0408335 for complete metadata about this dataset.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Litvinova, T (via Mendeley Data) (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1

Dataset of development of business during the COVID-19 crisis

Explore at:
Dataset updated
Nov 9, 2020
Dataset provided by
Data Archiving and Networked Services (DANS)
Authors
Litvinova, T (via Mendeley Data)
Description

To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

Search
Clear search
Close search
Google apps
Main menu